• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 16
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low luminosity elliptical galaxies

Halliday, Claire January 1998 (has links)
Long-slit spectra for the photometric axes of a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals, in the Virgo cluster and in nearby groups, are studied to investigate the galaxy kinematical structure and stellar evolutionary history. To determine the galaxy kinematical structure, the shape of the line-of-sight velocity distribution (hereafter LOSVD) is measured using the Fourier Correlation Quotient method of Bender (1990), adopting the parametrisation of the LOSVD due to van der Marel and Franx (1993). This parametrisation enables the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian function to be measured by the amplitudes H(_3) and H(_4) of the Gauss-Hermite series respectively. Rotation, velocity dispersion (σ), H(_3) and H(_4) are determined as a function of radius for both the major and minor axes of our sample. To summarise, LOSVD asymmetries were measured for the major axes of 12 galaxies which in the majority of cases have been interpreted as evidence for central disk-like components; evidence of both radial and tangential anisotropy were found from the measurement of H(_4); central decreases in σ are measured for 3 galaxies, which is interpreted as evidence that they have undergone some form of merger or interaction. On the basis of their measurements, galaxies are classified into 3 classes: types 1, 2 and 3. "Type 1" galaxies show strong evidence for both disk and bulge components and have the greatest measured values of H(_3) for our sample. Galaxies of "type 2" show strong evidence for embedded disk components and most (3 of 4) are measured to have central decreases in a. "Type 3" galaxies have kinematically-decoupled cores. Other galaxies, not classified, are NGC 3379 and NGC 4468.Measurements of the line-strength indices Mg(_b), Mg(_2), Hβ, Fe5270, Fe5335 and <Fe> are determined as a function of radius for all spectra and established to the Lick/IDS scale. The relations Mg’(_b)-Mg(_2), Mg’(_b), - log(σ), Mg(_b)- <Fe> and Hβ-[Mg(_b) <Fe>] are then studied. The Mg’(_b),-Mg(_2) relation of Wegner et al. (1998) and the calibrations of Worthey (1994) are compared with measurements here: this is used as a check of our calibration of Mg’(b), and Mg(_2). Measurements in the Mg’(_b)-log(σ) plane are considered separately for each galaxy and compared with the central relation of Colless et al. (1998). Measurements for most galaxies are found to be in good agreement with this relation. Measurements of Mg(_b) and <Fe> are similarly considered for each galaxy and compared with the predictions of the models of Worthey (1994). For the majority of galaxies, measurements are clearly offset from the Mg(_b)-<Fe> model grid of Worthey (1994), representing an [(^Mg)-(_Fe)] overabundance. This is an important result which shows that the [(^Mg)-(_Fe)] overabundance detected previously for the giant ellipticals similarly exists for ellipticals of the low luminosities studied here. For most galaxies this overabundance is found to be a constant function of radius. For the "type 2" galaxy NGC 3605, and NGC 4468, measurements are consistent with solar abundance ratios. Finally, measurements of Hβ and [Mg(_b) <Fe>] are compared with the models of Worthey (1994) to distinguish gradients in both age and metallicity. For all galaxies, gradients in metallicity are found with metallicity decreasing as a function of radius. For 5 galaxies (NGC 4564, NGC 3377, NGC 4478, NGC 4339 and NGC 3605) age gradients are also detected, with the galaxy centre shown to be younger than the surrounding galaxy. Interpreting these results together, different formation scenarios are proposed for the different galaxy types. For galaxies of "type 1", formation by homogenous, dissipational collapse is proposed. Galaxies of "type 2" show evidence for a less homogenous evolutionary history involving dissipationless collapse. No conclusive scenario is proposed for galaxies of "type 3".
2

Stellar populations of the first galaxies

Rogers, Alexander Bernard January 2014 (has links)
The stellar populations harboured by some of the Universe’s earliest galaxies are within observational reach. Determining the details of these stellar populations and their formation histories within the first billion years after the Big Bang is crucial for both understanding the earliest stages of galaxy evolution and for assessing the contribution of early star-forming galaxies to cosmic reionization. This thesis presents observational measurements of the rest-frame UV and optical colours of star-forming Lyman Break galaxies (LBGs) at redshifts 4 < z < 9, and their inferred stellar population parameters. By combining ground-based ~1 deg² surveys with deeper, narrower space-based deep-field surveys, we have constrained the rest-frame UV spectral slope of galaxies over a wide-range of cosmic time (4 < z < 9) and luminosity (−23 < MUV < −17) in a self-consistent way. To do so, we developed simulations to allow the inference of intrinsic colours from noisy, potentially biased observations. With these simulations, a robust UV colour measurement method was devised in preparation for the Hubble Ultra Deep Field 2012 (UDF12) survey. Then, after delivery of the UDF12 data, our technique and simulations were applied to yield the first bias-free measurements of the UV spectral slope of galaxies at z ≈ 7 and 8. We found no support for the previously claimed dominant sub-population of exotically blue, faint galaxies at z ≈ 7. In fact with careful consideration of their errors and selection biases, even the most extreme galaxies we observed can have their colours explained by stellar population synthesis models of unremarkable parameters. Expanding this study to brighter, rarer, galaxies required the inclusion of wide-area ground-based survey data, and consequently a more focused examination of galaxies at z ≈ 5. We selected high signal-to-noise galaxies from four fields, with absolute magnitudes spanning MUV = −22.5 to −17.5, and measured their rest-frame UV spectral slopes. Coupling these measurements with our simulated observations, we were able to determine the width of the intrinsic colour distribution of galaxies at z ≈ 5. We found that brighter galaxies are not only on average redder than their fainter counterparts, but they are also less self-similar in their colours. The redder average UV colours of brighter galaxies can be attributed to those galaxies being either older, or more dust reddened. By pairing these measurements, which are primarily a probe only of the presently forming portion of the stellar population, with those of LBG’s Balmer Breaks, which are more sensitive to bygone star formation, we were able to break this age–dust degeneracy and conclude that, at z ≈ 5, brighter galaxies are more heavily reddened than fainter galaxies even though their stars are no older.
3

Extragalactic Stellar Populations in the Near and Mid-infrared: 1-30 Micron Emission from Evolved Populations, Young and Dusty Star Forming Regions and the Earliest Stellar Populations

Mentuch, Erin 18 February 2011 (has links)
The near- through mid-infrared offers a unique and, as this thesis aims to show, essential view of extragalactic stellar populations both nearby, at intermediate redshifts and at very high redshift. In chapter 2, I demonstrate that rest-frame near-IR photometry obtained by the Spitzer Space Telescope provides more robust stellar mass estimates for a spectroscopic sample of ~100 galaxies in the redshift desert (0.5<z<2), and is crucial for modeling galaxies with young star-forming populations. From this analysis, a surprising result emerges in the data. Although the rest-frame light short of 2 micron improves stellar mass estimates, the models and observations disagree beyond 2 micron and emission from non-stellar sources becomes significant. At wavelengths from 1-30 micron, stellar and non-stellar emission contribute equally to a galaxy's global spectral energy distribution. This is unlike visible wavelengths where stellar emission dominates or the far-IR where dust emission provides the bulk of a galaxy's luminosity. Using the sample of high-z galaxies, in chapter 3, I quantify the statistical significance of the excess emission at 2-5 micron and find the emission to correlate with the OII luminosity, suggesting a link between the excess emission and star formation. The origin of the excess emission is not clear, although I explore a number of non-stellar candidates in this chapter. Nearby resolved observations provide a clearer picture of the excess by spatially resolving 68 nearby galaxies. By analyzing the pixel-by-pixel near-IR colours within each galaxy at ~1-5 micron, increasingly red near-IR colors are mapped to spatial regions in chapter 4. For regions with red NIR colors and high star formation rates, I find the broad near- through mid-IR spectrum is constant, varying only in amplitude as a function of the intensity of star formation, suggesting the infrared emission of a young, dusty stellar populations can be added to stellar population synthesis models as an additional component tied to the star formation rate. In closing the thesis, the focus is moved to the detection of stellar populations in the earliest star-forming galaxies. By z>6, all visible wavelength emission is redshifted into near-IR wavelengths. In chapter 5, I show how a tunable near-IR filter I have helped develop holds promise for finding bright Lyman alpha emitting galaxies at redshifts of 8<z<11.
4

Extragalactic Stellar Populations in the Near and Mid-infrared: 1-30 Micron Emission from Evolved Populations, Young and Dusty Star Forming Regions and the Earliest Stellar Populations

Mentuch, Erin 18 February 2011 (has links)
The near- through mid-infrared offers a unique and, as this thesis aims to show, essential view of extragalactic stellar populations both nearby, at intermediate redshifts and at very high redshift. In chapter 2, I demonstrate that rest-frame near-IR photometry obtained by the Spitzer Space Telescope provides more robust stellar mass estimates for a spectroscopic sample of ~100 galaxies in the redshift desert (0.5<z<2), and is crucial for modeling galaxies with young star-forming populations. From this analysis, a surprising result emerges in the data. Although the rest-frame light short of 2 micron improves stellar mass estimates, the models and observations disagree beyond 2 micron and emission from non-stellar sources becomes significant. At wavelengths from 1-30 micron, stellar and non-stellar emission contribute equally to a galaxy's global spectral energy distribution. This is unlike visible wavelengths where stellar emission dominates or the far-IR where dust emission provides the bulk of a galaxy's luminosity. Using the sample of high-z galaxies, in chapter 3, I quantify the statistical significance of the excess emission at 2-5 micron and find the emission to correlate with the OII luminosity, suggesting a link between the excess emission and star formation. The origin of the excess emission is not clear, although I explore a number of non-stellar candidates in this chapter. Nearby resolved observations provide a clearer picture of the excess by spatially resolving 68 nearby galaxies. By analyzing the pixel-by-pixel near-IR colours within each galaxy at ~1-5 micron, increasingly red near-IR colors are mapped to spatial regions in chapter 4. For regions with red NIR colors and high star formation rates, I find the broad near- through mid-IR spectrum is constant, varying only in amplitude as a function of the intensity of star formation, suggesting the infrared emission of a young, dusty stellar populations can be added to stellar population synthesis models as an additional component tied to the star formation rate. In closing the thesis, the focus is moved to the detection of stellar populations in the earliest star-forming galaxies. By z>6, all visible wavelength emission is redshifted into near-IR wavelengths. In chapter 5, I show how a tunable near-IR filter I have helped develop holds promise for finding bright Lyman alpha emitting galaxies at redshifts of 8<z<11.
5

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time.
6

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time.
7

Stellar population templates in the near-infrared

Brasseur, Crystal 28 August 2009 (has links)
We have obtained broad-band NIR-photometry for six Galactic star clusters, M92,M15,M13, NGC1851, M71 and NGC6791, as observed with the WIRCam wide-field imager on the Canada-France-Hawaii Telescope; supplemented by images taken with HAWK-I on VLT. From the resultant (V − J)-V and (V − K)-V colour-magnitude diagrams, fiducial sequences spanning the range in metallicity, −2.4 ≤ [Fe/H] ≤+0.3, have been defined which extend from the tip of the red-giant branch to ∼ 2.5 magnitudes below the main-sequence turnoff. These fiducials provide a valuable set of empirical isochrones for the interpretation of stellar population data in the 2MASS system. From the NIR data, the reddenings of M15, M71 and NGC6791 — which have been subject to considerable controversy — were found to be E(B−V)=0.075, 0.22 and 0.155 mag respectively. Comparisons of our CMDs to Victoria isochrones that have been transformed using the MARCS model colour-Teff relations reveal that the models reproduce the giant branches of clusters more metal-rich than [Fe/H] ≈ −1.3, but they become systematically redder than the observed RGBs as the cluster metallicity decreases. These discrepancies are seen consistently in the two colours and therefore may indicate that the temperature scale of the stellar evolutionary models for giant stars at low metallicity is too cool.MARCS colour transformations were also tested using the classic Population II subdwarfs. The MARCS colours show redward offsets of ∼ 0.03 mag when compared with the observed (V − K) and (J − K) colours (assuming best estimates of Teff, log g, and [Fe/H]), and a systematic blue offset relative to the isochrone temperatures. Together with the indications from the cluster (V − K) and (V − J) CMDs, these results suggest that there is a problem with the MARCS colour transformations involving J.
8

The Life Cycle of Stars: Supernovae in Starbursts

Kezwer, Jason 22 October 2013 (has links)
We have observed the nearest ultraluminous infrared galaxy Arp 220 with a 13 month near-infrared observing program using the Canada France Hawaii Telescope to search for obscured supernovae in this extreme star forming environment. This monitoring program was aimed as a feasibility study to determine the practicality of a large scale near-IR LIRG/ULIRG imaging survey. Establishing the supernova rate in these dusty galaxies is an important step toward confirming theorized star formation rates and settling the debate between the dominant energy source in LIRGs: star formation or AGN activity. Both the deduced high star formation rate and far-IR luminosity of Arp 220 suggest an atypically high supernova rate of 1-4 per year, two orders of magnitude greater than that of the Milky Way. We attempt the first direct observation of this rate which to date has been probed primarily through radio measurements of supernovae and remnants. Through a point-spread function matching and image subtraction procedure we find no supernovae outside the galactic nucleus, consistent with the paradigm of a strong nuclear-contained starburst. Image subtraction residuals prevent the discovery of supernovae in the central regions of the galaxy. Using differential photometry we find evidence for a statistically significant brightening in the Arp 220 nucleus with a K-band peak of approximately $\Delta m_K=0.16$ magnitudes. To find the true peak magnitude we use Hubble Space Telescope archival data to subtract off the nuclear background and find an absolute magnitude of $M_K = -22.19 \pm 0.16$ (non-absorbed). This exceeds the luminosity of a typical core collapse supernova by roughly 3.5 magnitudes; rather, the observed variations in nuclear brightness are most likely the signature of an active galactic nucleus embedded in the dusty nuclei of Arp 220 or the superposition of light from several supernovae. This method is not sensitive to the detection of individual supernovae and we cannot rule out the occurrence of any nuclear SNe during the observing period. The brightening event is dimmer in the H and J bands, appearing to be affected by extinction. Interpreting this as a supernova-related event we estimate the extinction in the nuclear regions of Arp 220 to lie between $2.01 \le A_K \le 3.40$ or $17.95 \le A_V \le 30.36$ in the optical, in agreement with several other estimates. Improved resolution is required in order to detect supernovae in the extremely bright nuclear environments of LIRGs. Alternatively, infrared spectroscopy would reveal the telltale spectral features of nuclear supernovae. Spectroscopic observations of the Arp 220 nuclei were conducted using Keck in July 2013 for this very purpose; results are pending. We also explore the hypothesis that type Ia supernovae are produced primarily from young stellar populations. We model elliptical galaxies as two component stellar systems using PEGASE stellar templates: a fixed older underlying population coupled with a younger, less massive population. Varying the age and mass ratio of the young component, we examine its effect on I) the colours and II) the supernova rate of the single underlying population. We explore the effect with redshift and employ both theoretical and observational forms of the type Ia delay-time distribution. We then apply our models to the MENeaCS supernova survey and find that the number and distribution of red sequence SN Ia hosts agrees with theoretical expectations. The lack of evidence for a type Ia rate cutoff argues for a continuous delay-time distribution in support of the double degenerate model as the primary SN Ia progenitor channel. We conclude that it is not possible for all type Ia events in ellipticals to originate from a young frosting of stars. / Graduate / 0606 / jkezwer@uvic.ca
9

Progress in globular cluster research : insights from NGC 6397 and Messier 4

Davis, Saul 05 1900 (has links)
Globular clusters are extreme stellar populations. They have the highest stellar density, and host both the oldest and most metal-poor stellar populations in the Galaxy. Their densities make them excellent testbeds for stellar dynamics, while the properties of their stars allows us to test our understanding of old and metal-poor stellar evolution. This thesis is comprised of three projects studying the two nearest globular clusters, NGC 6397 and Messier 4. By examining high-quality HST photometry of NGC 6397, we have constrained the binary fraction in both the central regions, and beyond the half-light radius. We find a binary fraction of ~0.05 in the core and ~0.015 in the outskirts. In the context of recent N-body simulations by Hurley et al., we interpret the observed binary fraction in the outer field as the primordial binary fraction. This value is lower than typically assumed, and has implications for cluster dynamics and N-body modeling. We report the discovery that young white dwarfs are dynamically hotter than their progenitors. Using the same photometry as mentioned above, and archival HST photometry of Messier 4, we have found that young white dwarfs have an extended radial distribution, and therefore a higher velocity dispersion, compared with older white dwarfs and their progenitors. This implies the existence of a ``natal kick''. Implications for cluster dynamics and stellar evolution are discussed. Finally, we present the spectra of 23 white dwarfs in Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. We find that all white dwarfs are of type DA. Assuming the same DA/DB ratio as is observed in the field, the chance of finding no DBs in our sample due to statistical fluctuations is 0.006. This suggests DB formation is suppressed in the cluster environment. Furthermore, we constrain the mass of these white dwarfs by fitting models to the spectral lines. Our best estimate of the masses of the white dwarfs currently forming in Messier 4 is 0.51+/-0.02 M_sun.This extends the empirical constraint on the initial-final mass relation over the entire range of initial masses that could have formed white dwarfs in a Hubble time. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
10

Fossils of the distant Galaxy: NGC 5466 and its stellar stream

Jensen, Jaclyn 07 December 2020 (has links)
The stellar halo of the Milky Way is populated by mostly old and metal-poor stars. As dynamical timescales are of order ~Gyrs at these large distances, accreted stellar substructures, such as dwarf galaxies or globular clusters, survive here as coherent entities longer than anywhere else in the Galaxy. These substructures represent our “fossil record” which can be used to reconstruct the Galaxy’s complex past. In this work, we seek to identify the structures found in the far reaches of the stellar halo as a step towards a correct interpretation of this fossil record. The advent of all-sky surveys in the Gaia era has ignited a prosperous period for this field of Galactic archaeology, but exploring the distant Milky Way (>10 kpc) with Gaia is difficult. Parallax measurements are much less accurate beyond the Solar neighborhood, though Gaia’s proper motions remain useful out to large radii. To push Gaia into the distant Galaxy, we combined these astrometric data with u-band photometry from the Canada-France Imaging Survey (CFIS). We exploited CFIS’ excellent photometric quality and depth (which extends 3 magnitudes deeper than that of the Sloan Digital Sky Survey) to use blue horizontal branch stars (BHBs) as a tracer population with well-measured distances. We first examined the distribution of BHBs using the OPTICS (Ordering Points To Identify the Clustering Structure) clustering algorithm to visualize the hierarchical nature of outer halo substructure. We then identified several well-known satellites, including a group of stars in the vicinity of a distant globular cluster (NGC 5466). Analysis of their kinematics suggested a few of these BHBs outside the cluster’s tidal radius were co-moving with NGC 5466, implying they may be tidal debris from this system. Interestingly, a stream had previously been detected extending from this globular cluster. However, its properties had not been studied in the decade since its discovery, and previous dynamical models were unable to reproduce many of the reported features. As one of the (allegedly) longest globular cluster streams on the sky - and given its distance and utility to constrain the Milky Way’s mass at large Galactic radius - we sought to explore this structure further. We subsequently used red giant branch stars (RGBs) identified in CFIS to try to better quantify the characteristics of the putative stream. We were able to filter these data and obtain a sample of stars that are fully consistent with stream membership and which span approximately 31 degrees of sky. Combined with the BHBs, we used these populations to trace the path of the stream, its distance and distance gradient across the stream’s longitude, and additionally estimated a lower limit to the stream’s luminosity. Our measurements suggest that the stream is at least 11% of the luminosity of the cluster. We then compared our observational data to dynamical models, which showed generally good agreement with the observed stream. This success reflects the updated properties of data measured in this work, and the inclusion of new data (especially proper motions). Our model suggests that the pericenter and apocenter of NGC 5466's orbit are 6.4 and 43 kpc, respectively, resulting in a very eccentric orbit (ε = 0.74). We also find evidence that the cluster experienced a recent interaction (within the past ~100 Myrs) with the Galactic disk, suggesting that the primary source of mass loss in this system may be caused by disk-shocking. The NGC 5466 stellar stream also exhibits an interesting heliocentric gradient in the leading arm, which our simplistic spherical halo model does not fully reproduce. Dynamical experiments with various halo shapes fit to this stream will prove interesting for future work. For local cosmology in particular, long, thin, dynamically cold stellar streams are ideal systems for constraining properties of the Milky Way’s dark matter halo, and streams at large radius are especially useful for measuring the Galaxy's mass interior to the stream. In this respect, we anticipate that NGC 5466 will be exceptionally useful as a probe of the shape, mass, and dark substructure of the Milky Way's distant dark matter halo. / Graduate

Page generated in 0.124 seconds