Der neuronale Zelluntergang bei einer Vielzahl von Krankheiten des ZNS, wie z.B. Morbus Alzheimer (AD) und Temporallappenepilepsie (TLE), wird mit oxidativem Stress sowie Fehlfunktionen von Kaliumkanälen in Verbindung gebracht. In dieser Studie soll die selektive neuronale Sensitivität auf oxidativen Stress durch die Messung der oxidativen Modulation von Kaliumströmen untersucht werden. Dabei werden sternförmige Neuronen der zweiten Schicht des entorhinalen Kortex (EC) (bei AD bereits früh geschädigt) mit pyramidalen Neuronen der dritten Schicht des EC (früh geschädigt bei TLE) sowie hippocampalen pyramidalen Neuronen der CA1 Region (bei AD und TLE erst spät geschädigt) miteinander verglichen. Mittels patch-clamp Ganzzellmessung zeigt diese Studie die differentielle Hemmung spannungsabhängiger transienter (IA) und „delayed-rectifier“ K+-Ströme (IK(V)) durch Arachidonsäure (AA) und Wasserstoffperoxid (H2O2). Die intrazelluläre Applikation von AA (1 pM) reduzierte IA in Neuronen des entorhinalen Kortex signifikant stärker verglichen mit Neuronen des CA1. ETYA imitiert diesen Effekt, dies schliesst die Metabolite der AA als Mediatoren des Effekts auf Kaliumkanäle aus. Weder AA noch ETYA reduzierten IK(V). Im Gegensatz dazu reduzierte H2O2 IA in Neuronen des CA1 effektiver als in Neuronen der Schichten II und III des entorhinalen Kortex. Die Reduktion des IA, vermittelt durch AA, wurde durch Radikalfänger (Glutathion, Ascorbinsäure, Vitamin E Analogon Trolox) blockiert. Dabei verstärkten manche dieser Antioxidantien den Effekt der AA, dies legt eine komplexere Modulation dieser Ströme in Schnitten verglichen mit Kulturen nahe. Dies sollte bei der Entwicklung antioxidativer Therapien von AD und TLE berücksichtigt werden. Bei der heterologer Expression von Kv1.4 und Kv4.2 in HEK-293 Zellen wurden funktionelle Kanäle gebildet und A-Typ Ströme ausgelöst. Diese Ströme wurden nach der Applikation von 1 pM AA stark reduziert. ROS scheinen neben ihrer zellschädigenden Wirkung physiologische Prozesse zu regulieren, indem sie eine Reihe von Signalwegen beeinflussen. Da spannungsabhängige Kaliumkanäle vielen wichtigen zellulären Funktionen zugrundeliegen, könnte die Modulation dieser Kanäle durch ROS einen Mechanismus für die Feinabstimmung zellulärer Prozesse darstellen. / Oxidative stress and dysfunction of potassium channels are believed to play a role in neuronal death in a number of CNS diseases (e.g. Alzheimer’s disease, epilepsy). The present study addresses selective neuronal vulnerability to oxidative stress by studying oxidative modulation of potassium channels in entorhinal cortex (EC) layer II stellate neurons (cell loss early in AD) and layer III pyramidal neurons (early damage in TLE), in comparison to hippocampal CA1 pyramidal neurons (late damage in TLE and AD). Using whole-cell patch-clamp, differential inhibition of transient IA and delayed rectifier K+-currents IK(V) by arachidonic acid (AA) and H2O2 was demonstrated. Intracellular AA (1 pM) reduced IA in EC neurons significantly stronger than in CA1 neurons. AA affected the voltage dependence of steady-state inactivation as well. ETYA mimicked the effect of AA, excluding its metabolites as mediators of IA modulation. Neither AA nor ETYA reduced IK(V). In contrast, a non-lipid oxidizing agent, H2O2 reduced IA more effectively and robustly attenuated IK(V) in CA1, compared to EC neurons. AA-mediated reduction of IA was blocked by free radical scavengers (glutathione, ascorbic acid, Trolox). Antioxidants did not simply inhibit AA and H2O2 effects. In particular, they even enhanced AA effects, suggesting more complex modulation of these currents in slices, compared to culture. Moreover, intracellular antioxidants, themselves, influenced maximal conductance and voltage-conductance characteristics of IA and IK(V). This should be considered in design of anti-oxidative therapies in AD and TLE. Heterologous expression of Kv1.4 and of Kv4.2 cDNA in HEK-293 cells formed functional channels and elicited A-type currents, which shared similar biophysical characteristics with native IA from the hippocampus. These currents were strongly decreased upon administration of 1pM AA, demonstrating that at least one of multiple sites for AA action is situated on the pore-forming alfa-subunit of the A-channel. In conclusion, beside contribution to cell damage, ROS may regulate physiological processes by acting on different signalling pathways. Since voltage-gated K+-channels underlie many important cellular functions modulation of these channels by ROS would represent a mechanism for fine tuning of cellular processes.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16323 |
Date | 19 September 2007 |
Creators | Angelova, Plamena |
Contributors | Elepfandt, Andreas, Heinemann, Uwe, Schmitz, Dietmar |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf, application/octet-stream, application/octet-stream |
Page generated in 0.003 seconds