Return to search

EXPLORING THE STRUCTURAL, ELECTRONIC, AND MAGNETORESPONSIVE PROPERTIES OF NOVEL MAGNETIC MATERIALS IN BULK, RIBBONS, AND THIN FILMS

The structural, electronic, magnetic, magnetocaloric, and transport properties of doped Ni-Mn-(In, Sn) based Heusler alloys were studied using neutron diffraction, x-ray diffraction (XRD), differential scanning calorimetry (DSC), high field magnetization, specific heat, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and hydrostatic pressure measurements. The adiabatic temperature change (∆Tad) by a direct method and through thermomagnetic measurements in magnetic fields up to 14 T has been performed for these alloys. Also the mixed effect of pressure and magnetic field on the transition temperature of these alloys are discussed. In order to develop new magnetocaloric and multifunctional materials, the synthesis and characterization of Heusler alloys in reduced dimensions, i.e., ribbons and thin films has been performed. In addition, the structural, magnetic, and magnetocaloric properties of Ni-based binary alloys were investigated, including saturation magnetization and Curie temperature (TC) for the possible applications in self controlled magnetic hyperthermia applications.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-2686
Date01 May 2019
CreatorsPandey, Sudip
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0022 seconds