• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 25
  • 15
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural, magnetic and magneto-optic properties of layered thin films incorporating PtMnSb

Benbattouche, Nour-Eddine January 1995 (has links)
No description available.
2

Photoemission studies of intermetallic compounds

Brown, David January 1997 (has links)
Ultraviolet photoemission spectroscopy has been employed to investigate the electronic density of states of Heusler and Cu3Au-type intermetallic compounds. Cooper minima and resonant photoemission effects have been utilised to determine the contribution of the constituent elements to the valence band spectra. For the Mn-based Heusler alloys Co2MnSn, Cu2MnAl and Pd2MnSn, the Mn 3d-derived states disperse across the full width of the valence band.
3

An investigation of the thermal properties of some strongly correlated electron systems

Parsons, Mark James January 1998 (has links)
The correlated electron systems which are the subject of this thesis are the strong electron–phonon coupling superconductor HfV2, and the localised moment magnetic systems of the alloy series Pd2REIn (RE = Gd, Tb, Ho, Er and Yb).
4

A study of the martensitic phase transition in the shape memory alloy Ni₂MnGa

Bargawi, Ahmad Yousef January 1998 (has links)
A study of the martensitic phase transition in the shape memory alloy Ni2MnGa has been carried out. Ni2MnGa is one of the group of "shape memory effect" alloys which are currently exciting considerable interest. The origin of this effect in the compound is in the phase change which takes place on cooling through T = 200 K from the cubic L21 Heusler structure to a tetragonal phase. Recently the results of band structure calculations have been used to conclude that in Ni2MnGa the structural phase transition is driven by a band Jahn-Teller distortion.
5

PHASE TRANSITIONS AND MAGNETOCALORIC EFFECT IN MnNiGe<sub>1−x</sub>Al<sub>x</sub>, Ni<sub>50</sub>Mn<sub>35</sub>(In<sub>1−x</sub>Cr<sub>x</sub>)<sub>15</sub> AND (Mn<sub>1−x</sub>Cr<sub>x</sub>)NiGe<sub>1.05</sub>

Quetz, Abdiel 01 August 2014 (has links)
The magnetocaloric and thermomagnetic properties of the MnNiGe1-xAlx, Ni50Mn35(In1−xCrx)15 and (Mn1−xCrx)NiGe1.05 systems have been studied by x-ray diffraction, differential scanning calorimetry (DSC), and magnetization measurements. Partial substitution of Al for Ge in MnNiGe1−xAlx results in a first-order magnetostructural transition (MST) from a hexagonal ferromagnetic to an orthorhombic antiferromagnetic phase at 186 K (for x = 0.09). A large magnetic entropy change of ∆SM = -17.6 J/kg K for ∆H = 5 T was observed in the vicinity of TM = 186 K for x = 0.09. This value is comparable to those of well-known giant magnetocaloric materials, such as Gd5Si2Ge2, MnFeP0.45As0.55, and Ni50Mn37Sn13 [1]. The values of the latent heat (L = 6.6 J/g) and corresponding total entropy changes (∆ST = 35 J/kg K) have been evaluated for the MST using DSC measurements. Large negative values of ∆SM of -5.8 and -4.8 J/kg K for ∆H = 5 T in the vicinity of TC were observed for x = 0.09 and 0.085, respectively. Partial substitution of Cr for Mn in(Mn1−xCrx)NiGe1.05 results in a MST from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near TM ~ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni50Mn35(In1−xCrx)15 shifts the magnetostructural transition to a higher temperature (TM ~ 450 K) for x = 0.1. Large magnetic entropy changes of ∆SM = -12 (J/kgK) and ∆S = -11 (J/kgK), both for a magnetic field change of 5 T, were observed in the vicinity of TM for (Mn1−xCrx)NiGe1.05 and Ni50Mn35(In1−xCrx)15, respectively. The concentration-dependent (T-x) phase diagram of transition temperatures (magnetic, structural, and magnetostructural) has been generated using magnetic, XRD, and DSC data. The role of magnetic and structural changes on transition temperatures are discussed.
6

Estudo do campo hiperfino magnetico no sitio do Ta-181 nas ligas de Heusler Cosub2ScSn, Cosub2ScGa e Cosub2HfSn

ATTILI, ROBERTA N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:01Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:28Z (GMT). No. of bitstreams: 1 04496.pdf: 1953193 bytes, checksum: 83f66485f1705e2b64ca387b0893c2cb (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
7

MAGNETIC, TRANSPORT, AND MAGNETOCALORIC PROPERTIES OF BORON DOPED Ni-Mn-In ALLOYS

Pandey, Sudip 01 August 2015 (has links)
The impact of B substitution in Ni50Mn35In15-xBx Heusler alloys with x = (0, 0.5, 0.75, 1, 1.1 1.5, and 2) on the structural, magnetic, transport, and parameters of magnetocaloric effect has been studied by means of room temperature XRD-diffraction, differential scanning calorimetry (DSC), and thermomagnetic measurements (in a magnetic field up to 5 T and temperature interval 5-400 K). Direct adiabatic temperature (ΔTAD) measurements have been carried out for an applied magnetic field change (ΔH) of 1.8 T. The partial substitution of In by B in Ni50Mn35In15-xBx Heusler alloys induced a non-linear temperature shift of the magnetostructural transition while Curie temperature (TC) was found to be nearly constant (TC ~ 320 K) for all compounds. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be larger or comparable to parameters observed in other MCE materials, such as Ni50Mn34.8In14.2B and Ni50Mn35In14X (X=In, Al, and Ge) Heusler alloys. It has been demonstrated that the martensitic transformation temperature and the corresponding ∆SM can be tuned through a slight variation in composition of B in NiMnInB alloys. A magnetoresistance associated with martensitic transformation was found to be -60% for x = 0.75 at T = 240 K for a magnetic field change of 5 T. The maximum absolute value of ΔTAD = 2.5 K was observed at the magnetostructural transition for Ni50Mn35In14.5B0.5. The roles of the magnetic and structural changes on the transition temperatures are discussed.
8

PHASE TRANSITIONS AND MAGNETOCALORIC EFFECTS IN Ni1−xCrxMnGe1.05 AND GdNi2Mnx

Aryal, Anil 01 August 2015 (has links)
The magnetocaloric and thermomagnetic properties of the Ni1-xCrxMnGe1.05 (for x = 0, 0.035, 0.070, 0.105, 0.110, 0.115, and 0.120) system have been studied by X-ray diffraction, differential scanning calorimetry (DSC), resistivity and magnetization measurements. A change in crystal structure from orthorhombic to hexagonal was observed in the XRD data with an increase in chromium concentrations. The values of the cell parameters and volume of the unit cell for hexagonal phase were determined. It was found that the partial substitution of Cr for Ni in Ni1-xCrxMnGe1.05 results in a first order magnetostructural transition from antiferromagnetic to ferromagnetic (FM) at TM of about132 K, 100 K, and 110 K for x= 0.105, 0.115, and 0.120, respectively. A FM to paramagnetic second order transition has been observed at TC around 200K. A magnetic entropy change of = 4.5 J/kg K, 5.6 J/Kg K, and 5.06 J/Kg K was observed in the vicinity of TC for x = 0.105, 0.115, and 0.120 respectively at ΔH = 5T. The values of the latent heat and corresponding total entropy changes have been determined from Differential Scanning Calorimetry (DSC) measurements. Magnetoresistance values of about -5% were measured near TC for x =0.105. The maximum value of refrigeration capacity (RC) and relative cooling power (RCP) was found to be 155 J/Kg and 175 J/Kg respectively for x = 0.120. A concentration-dependent (T-x) phase diagram of transition temperatures has been constructed using the magnetic and DSC data. The structural, magnetic and magnetocaloric properties of GdNi2Mnx system (for x = 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5) have been studied by x-ray diffraction and magnetization measurements. A mixture of the Laves phase C15 and a phase with rhombohedral structure PuNi3- type (space group R m) was observed in the XRD data. A second order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) was found, characterized by a long-range exchange interaction as predicted by mean field theory. The maximum value of magnetic entropy changes, -∆SM, near TC for ∆H = 5T, was found to be 3.1 J/KgK, 2.8 J/KgK, 2.9 J/KgK, and 2.5 J/Kg K for x = 0.8, 1.2, 1.4, and 1.5 respectively. In spite of the low values of ΔSM, the RC and RCP value was found to be 176 J/Kg and 220 J/Kg for the GdNi2Mn0.8 compound, respectively.
9

Estudo do campo hiperfino magnetico no sitio do Ta-181 nas ligas de Heusler Cosub2ScSn, Cosub2ScGa e Cosub2HfSn

ATTILI, ROBERTA N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:01Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:28Z (GMT). No. of bitstreams: 1 04496.pdf: 1953193 bytes, checksum: 83f66485f1705e2b64ca387b0893c2cb (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
10

Corrélation entre les propriétés structurales et magnétiques des couches minces et nanostructures de Co₂FeAl / Correlation between structural and magnetic properties of Co₂FeAl thin films and nanostructures

Tuzcuoglu, Hanife 26 November 2014 (has links)
Corrélation entre les propriétés structurales et magnétiques des couches minces et nanostructures de Co₂FeAl Co₂FeAl (CFA) est un alliage Heusler très attractif pour les applications en spintronique. Ses propriétés magnétiques et structurales dépendent fortement des orientations cristallines et de la qualité des interfaces. Ce travail de thèse a porté sur les effets de l'épaisseur (dCFA), du type de substrat (MgO, Si et SrTiO₃ (STO)) ainsi que de la température de recuit (Ta) sur ces propriétés. Les analyses structurales ont montré que les couches déposées sur les substrats MgO et STO croissent avec épitaxie contrairement au cas de Si. Lorsque dCFA et Ta diminuent, l’ordre chimique évolue de la phase moyennement ordonnée B2 vers la phase plus désordonnée A2, quel que soit le substrat. Les mesures de résonance ferromagnétique (FMR) révèlent que les couches sur MgO et STO présentent une superposition d'anisotropies planaires uniaxiale et d’ordre 4, alors que seule une faible anisotropie uniaxiale est présente pour les couches CFA déposées sur Si. Cette anisotropie d’ordre 4 a été directement reliée à la structure cristalline de ces couches. Les mesures FMR et de diffusion Brillouin de la lumière ont mis en évidence la présence d’une grande anisotropie uniaxiale perpendiculaire négative, liée à l’interface CFA/MgO, qui augmente avec 1/dCFA et avec Ta. Les mécanismes de relaxation de l’aimantation ont été soigneusement étudiés et des coefficients d'amortissement de Gilbert de 0.0011 ont été mesurés, validant ainsi l’intérêt porté à ces alliages pour les applications dans les dispositifs à base de transfert de spin. Enfin, l’étude de réseaux de lignes submicroniques à base des couches minces de CFA a révélé une quantification des ondes de spin liée à la largeur finie des lignes. / ACorrelation between structural and magnetic properties of Co₂FeAl thin films and nanostructures Co₂FeAl (CFA) is a very attractive Heusler alloy for spintronic applications. Their structural and magnetic properties depend strongly on the crystalline orientations and the interfaces quality. Therefore, the aim of this thesis is the study effects of the film thickness (dCFA), the substrate (MgO, Si and SrTiO₃(STO)) as well as the annealing temperature (Ta) on these properties. The structural analysis revealed a good epitaxial growth for films deposited on MgO and STO, in contrast to the Si substrate. The chemical order varies from the partially ordered B2 phase to the disordered A2 phase as dCFA or Ta decreases, regardless of the substrate. The ferromagnetic resonance (FMR) measurements show the superposition of a uniaxial and fourfold anisotropies for films grown on MgO and STO and only a weak uniaxial anisotropy for the samples grown on Si. The fourfold anisotropy is directly correlated to the crystal structure of the samples. The FMR and Brillouin light scattering measurements reveal the presence of a large negative perpendicular uniaxial anisotropy induced by CFA/MgO interface, which increases with 1/dCFA and with Ta. The relaxation mechanisms have carefully been studied and Gilbert damping coefficients of 0.0011 have been measured making CFA as a potential candidate for spin transfer torque-based devices. Finally, the study of submicron arrays of stripe obtained by patterning of the continuous CFA films reveals a spin waves quantization due to the finite stripes width.

Page generated in 0.0287 seconds