A framework designed to guide the effective use of remote sensing in large-area, multi-jurisdictional habitat mapping studies has been developed. Based on hierarchy theory and the remote sensing scene model, the approach advocates (i) identifying the key physical attributes operating on the landscape; (ii) selecting a series of suitable remote sensing data whose spatial, spectral, radiometric, and temporal characteristics correspond to the attributes of interest; and (iii) applying an intelligent succession of scale-sensitive data processing techniques that are capable of delivering the desired information. The approach differs substantially from the single-map, classification-based strategies that have largely dominated the wildlife literature, and is designed to deliver a sophisticated, multi-layer information base that is capable of supporting a variety of management objectives. The framework was implemented in the creation of a multi-layer database composed of land cover, crown closure, species composition, and leaf area index (LAI) phenology over more than 100,000 km<sup>2</sup> in west-central Alberta. Generated through a combination of object-oriented classification, conventional regression, and generalized linear models, the products represent a high-quality, flexible information base constructed over an exceptionally challenging multi-jurisdictional environment. A quantitative comparison with two alternative large-area information sources—the Alberta Vegetation Inventory and a conventional classification-based land-cover map—showed that the thesis database had the highest map quality and was best capable of explaining both individual—and population-level resource selection by grizzly bears.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/977 |
Date | January 2005 |
Creators | McDermid, Gregory |
Publisher | University of Waterloo |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | application/pdf, 7271200 bytes, application/pdf |
Rights | Copyright: 2005, McDermid, Gregory. All rights reserved. |
Page generated in 0.0015 seconds