Return to search

Embedding of QDs into Ionic Crystals:: Methods, Characterization and Applications

Colloidal semiconductor quantum dots (QDs) have gained substantial interest as adjustable, bright and spectrally tunable fluorophores in the past decades. Besides their in-depth analyses in the scientific community, first industrial applications as color conversion and color enrichment materials were implemented. However, stability and processability are essential for their successful use in these and further applications. Methods to embed QDs into oxides or polymers can only partially solve this challenge. Recently, our group introduced the embedding of QDs into ionic salts, which holds several advantages in comparison to polymer or oxide-based counterparts. Both gas permeability and environmental-related degradation processes are negligible, making these composites an almost perfect choice of material. To evaluate this new class of QD-salt mixed crystals, a thorough understanding of the formation procedure and the final composites is needed. The present work is focused on embedding both aqueous-based and oil-based metal-chalcogenide QDs into several ionic salts and the investigations of their optical and chemical properties upon incorporation into the mixed crystals. QDs with well-known, reproducible and high-quality synthetic protocols are chosen as emissive species. CdTe QDs were incorporated into NaCl as host matrix by using the straightforward "classical" method. The resulting mixed crystals of various shapes and beautiful colors preserve the strong luminescence of the incorporated QDs. Besides NaCl, also borax and other salts are used as host matrices.

Mercaptopropionic acid stabilized CdTe QDs can easily be co-crystallized with NaCl, while thioglycolic acid as stabilizing agent results in only weakly emitting powder-like mixed crystals. This challenge was overcome by adjusting the pH, the amount of free stabilizer and the type of salt used, demonstrating the reproducible incorporation of highest-quality CdTe QDs capped with thioglycolic acid into NaCl and KCl salt crystals. A disadvantage of the "classical" mixed crystallization procedure was its long duration which prevents a straightforward transfer of the protocol to less stable QD colloids, e.g., initially oil-based, ligand exchanged QDs. To address this challenge, the "Liquid-liquid-diffusion-assisted-crystallization" (LLDC) method is introduced. By applying the LLDC, a substantially accelerated ionic crystallization of the QDs is shown, reducing the crystallization time needed by one order of magnitude. This fast process opens the field of incorporating ligand-exchanged Cd-free QDs into NaCl matrices. To overcome the need for a ligand exchange, the LLDC can also be extended towards a two-step approach. In this modified version, the seed-mediated LLDC provides for the first time the ability to incorporate oil-based QDs directly into ionic matrices without a prior phase transfer.

The ionic salts appear to be very tight matrices, ensuring the protection of the QDs from the environment. As one of the main results, these matrices provide extraordinary high photo- and chemical stability. It is further demonstrated with absolute measurements of photoluminescence quantum yields (PL-QYs), that the PL-QYs of aqueous CdTe QDs can be considerably increased upon incorporation into a salt matrix by applying the "classical" crystallization procedure. The achievable PL enhancement factors depend strongly on the PL-QYs of the parent QDs and can be described by the change of the dielectric surrounding as well as the passivation of the QD surface. Studies on CdSe/ZnS in NaCl and CdTe in borax showed a crystal-induced PL-QY increase below the values expected for the respective change of the refractive index, supporting the derived hypothesis of surface defect curing by a CdClx formation as one main factor for PL-QY enhancement.

The mixed crystals developed in this work show a high suitability as color conversion materials regarding both their stability and spectral tunability. First proof-of-concept devices provide promising results. However, a combination of the highest figures of merit at the same time is intended. This ambitious goal is reached by implementing a model-experimental feedback approach which ensures the desired high optical performance of the used emitters throughout all intermediate steps. Based on the approach, a white LED combining an incandescent-like warm white with an exceptional high color rendering index and a luminous efficacy of radiation is prepared. It is the first time that a combination of this highly related figures of merit could be reached using QD-based color converters. Furthermore, the idea of embedding QDs into ionic matrices gained considerable interest in the scientific community, resulting in various publications of other research groups based on the results presented here.

In summary, the present work provides a profound understanding how this new class of QD-salt mixed crystal composites can be efficiently prepared. Applying the different crystallization methods and by changing the matrix material, mixed crystals emitting from blue to the near infrared region of the electromagnetic spectrum can be fabricated using both Cd-containing and Cd-free QDs. The resulting composites show extraordinary optical properties, combining the QDs spectral tunability with the rigid and tight ionic matrix of the salt. Finally, their utilization as a color conversion material resulted in a high-quality white LED that, for the first time, combines an incandescent-like hue with outstanding optical efficacy and color rendering properties. Besides that, the mixed crystals offer huge potential in other high-quality applications which apply photonic and optoelectronic components.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29121
Date04 December 2015
CreatorsAdam, Marcus
ContributorsEychmüller, Alexander, Kaskel, Stefan, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0154 seconds