A solution to reduce exhaust emissions from heavy commercial vehicles are to haul the vehicles completely or partially electric. This means that the vehicle must contain a significant electric energy source. The large capacity of the energy source causes the vehicle to either sacrifice a large part of its up time to charge the source or apply a higher charge power at the cost of power losses and lifetime of the energy source. This thesis contains a pre-study of high-power DC-charge of hybrid batteries from existing infrastructure suited to electric hybrid cars. Following parts are included in the thesis: modeling of a battery pack and a DC-DC converter, formulation of a MPC controller for the battery pack, analysis of charging strategies and battery restrictions through simulations. The thesis results shows that a longer charging time increases the energy efficiency and reduces the degradation in the battery. It also shows that a charging strategy similar to constant-current-constant-voltage charging should be used for a full charge of an empty battery.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-119618 |
Date | January 2015 |
Creators | Hällman, Oscar |
Publisher | Linköpings universitet, Datorteknik, Linköpings universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds