Return to search

Development of Hartmann Screen Test for Measurement of Stress during Thin Film Deposition

The Hartmann screen test (HST) is a well-known technique that has been used for many years in optical metrology. This thesis describes how the technique has been adapted to create a system for continuous in situ monitoring of the internal stress in thin films during plasma deposition. Stress is almost always present in thin films. Stress can affect the physical properties of film, and also influence phenomena which are important in the technology of thin film manufacture such as adhesion and crystallographic defects. For these reasons, it is very important to control and manage the film stress during manufacture of devices based on thin films. The commonest way to infer stress is to measure the change in substrate curvature that it produces. This is often done by comparison of substrate curvatures before and after deposition with surface profilometry, or interferometry. However, these methods are unsuitable for implementing during film deposition in the vacuum chamber. A novel method for measuring changes in curvature of the thin film substrate in situ has been developed, making use of the HST. An expanded laser beam is passed through a screen containing a number of small apertures, which breaks it up into several rays. After reflecting from the surface of the thin film wafer, the rays are received on an array detector as a spot pattern. Image processing is performed on the recorded spot images to determine the positions of spots accurately. Spot centre positions are recorded at start of deposition as a reference, then their displacement is tracked with time during deposition. The spot deflections are fitted to a theoretical model, in which the change in sample profile is described by a second-order surface. The principal axes of curvature of this surface and their orientation are obtained by a least-squares fitting procedure. From this, the thin film stress can be inferred and monitored in real time. Equipment using this technique has been designed and developed in prototype form for eventual use in the RMIT cathodic arc deposition facility. First experiments with a classic Hartmann screen configuration proved that the technique gave good results, but precision was limited by diffraction and interference effects in the recorded image which made determination of spot centres more difficult. A modified configuration was developed, in which a camera is focused on the Hartmann screen, giving much sharper spot patterns and improved resolution. Tests on the prototype system and comparison with other techniques have shown that it is possible to determine changes in sample curvature with a precision of approximately 0.01 m-1. This corresponds to stress changes of around 0.5 GPa for typical wafer and film thicknesses used in practice. The Hartmann screen test is straightforward to use and to interpret. Image processing and analysis of the recorded spot patterns can be automated and performed continuously in real time during thin film deposition. The system promises to be very useful for monitoring stress and thus controlling the deposition process for improved quality of thin film manufacture.

Identiferoai:union.ndltd.org:ADTP/210408
Date2008 June 1930
CreatorsForouzandeh, Farhad, s2007552@student.rmit.edu.au
PublisherRMIT University. Applied Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Farhad Forouzandeh

Page generated in 0.0027 seconds