Return to search

Comparison of Heat Exchanger Designs for Aircraft Thermal Management  Systems

Thermal management has become a major concern in the design of current and future more and all electric aircraft (M/AEA). With ever increasing numbers of on-board heat sources, higher heat loads, limited and even decreasing numbers of heat sinks, integration of advanced intelligence, surveillance and reconnaissance (ISR) and directed energy weapons, requirements for survivability, the use of composite materials, etc., existing thermal management systems and their components have been pushed to the limit. To address this issue, more efficient methods of thermal management must be implemented to ensure that these new M/AEA aircraft do not overheat and prematurely abort their missions. Crucial to this effort is the need to consider advanced heat exchanger concepts, comparing their designs and performance with those of the conventional compact exchangers currently used on-board aircraft thermal management systems. As a step in this direction, the work presented in this thesis identifies two promising advanced heat exchanger concepts, namely, microchannel and phase change heat exchangers. Detailed conceptual design and performance models for these as well as for a conventional plate-fin compact heat exchanger are developed and their design and performance optimized relative to the criterion of minimum dry weight. Results for these optimizations are presented, comparisons made, conclusions drawn, and recommendations made for future research. These results and comparisons show potential performance benefits for aircraft thermal management incorporating microchannel and phase change heat exchangers. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/75142
Date02 September 2015
CreatorsReed, William Cody
ContributorsAerospace and Ocean Engineering, Raj, Pradeep, von Spakovsky, Michael R., Choi, Seongim Sarah
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds