• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • Tagged with
  • 22
  • 22
  • 22
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprehensive Model-Based Design and Analysis Approach for Thermal Management Systems in Hybridized Vehicles

January 2017 (has links)
abstract: This research effort focuses on thermal management system (TMS) design for a high-performance, Plug-in Hybrid Electric Vehicle (PHEV). The thermal performance for various components in an electrified powertrain is investigated using a 3D finite difference model for a complete vehicle system, including inherently temperature-sensitive components. The components include the electric motor (EM), power electronics, Energy Storage System (ESS), and Internal Combustion Engine (ICE). A model-based design approach is utilized, where a combination of experimental work and simulation are integrated. After defining heat sources and heat sinks within the power train system, temporal and spatial boundary conditions were extracted experimentally to facilitate the 3D simulation under different road-load scenarios. Material properties, surface conditions, and environmental factors were defined for the geometrical surface mesh representation of the system. Meanwhile the finite differencing code handles the heat transfer phenomena via conduction and radiation, all convective heat transfer mode within the powertrain are defined using fluid nodes and fluid streams within the powertrain. Conclusions are drawn through correlating experimental results to the outcome from the thermal model. The outcome from this research effort is a 3D thermal performance predictive tool that can be utilized in order to evaluate the design of advanced thermal management systems (TMSs) for alternative powertrains in early design/concept stages of the development process. For future work, it is recommended that a full validation of the 3D thermal model be completed. Subsequently, design improvements can be made to the TMS. Some possible improvements include analysis and evaluation of shielding of the catalytic converter, exhaust manifold, and power electronics, as well as substituting for material with better thermal performance in other temperature-sensitive components, where applicable. The result of this improvement in design would be achieving an effective TMS for a high-performance PHEV. / Dissertation/Thesis / Masters Thesis Engineering 2017
2

Comparison of Heat Exchanger Designs for Aircraft Thermal Management  Systems

Reed, William Cody 02 September 2015 (has links)
Thermal management has become a major concern in the design of current and future more and all electric aircraft (M/AEA). With ever increasing numbers of on-board heat sources, higher heat loads, limited and even decreasing numbers of heat sinks, integration of advanced intelligence, surveillance and reconnaissance (ISR) and directed energy weapons, requirements for survivability, the use of composite materials, etc., existing thermal management systems and their components have been pushed to the limit. To address this issue, more efficient methods of thermal management must be implemented to ensure that these new M/AEA aircraft do not overheat and prematurely abort their missions. Crucial to this effort is the need to consider advanced heat exchanger concepts, comparing their designs and performance with those of the conventional compact exchangers currently used on-board aircraft thermal management systems. As a step in this direction, the work presented in this thesis identifies two promising advanced heat exchanger concepts, namely, microchannel and phase change heat exchangers. Detailed conceptual design and performance models for these as well as for a conventional plate-fin compact heat exchanger are developed and their design and performance optimized relative to the criterion of minimum dry weight. Results for these optimizations are presented, comparisons made, conclusions drawn, and recommendations made for future research. These results and comparisons show potential performance benefits for aircraft thermal management incorporating microchannel and phase change heat exchangers. / Master of Science
3

Rankine Cycle Investigation on Meeting Power and Thermal Requirements of High-Speed Aircraft

Spark, Jacob J. 15 June 2023 (has links)
No description available.
4

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION

Gregg, Christopher B. 27 September 2007 (has links)
No description available.
5

Development and Evaluation of Alternative Electric Thermostat Design

Isaksson, Arvid January 2018 (has links)
Introducing an electric thermostat to the thermal management system is a way of actively controlling the temperature of the engine, which has been shown to have several possible gains regarding power, fuel consumption, emissions and engine durability. Complexity, cost and durability are key concerns that have led to no heavy duty truck on the market having an electrically controllable thermostat. This emphasizes the need for exploring alternative solutions that enables electric control of the thermostat according to the needs of heavy commercial vehicles. Several concepts have been generated to solve this problem and a model based approach in Simulink, Matlab and GT Suite was used for the development and evaluation. The most promising concept of combining a BLDC electric motor with a wax body enables electric control with a downsized actuator and full fail-safe function while showing improvements in temperature control performance compared to a traditional wax thermostat. This thesis has increased the knowledge on the subject and could allow for implementing an electrically controlled thermostat in future Scania heavy duty trucks, leading to a more durable engine with lower fuel consumption and emissions.
6

Testing and Thermal Management System Design of an Ultra-Fast Charging Battery Module for Electric Vehicles / Battery Module Thermal Management System Design

Zhao, Ziyu January 2021 (has links)
This thesis consists of three main objectives: fundamental and literature review of EV batteries, experimental development, and validation of two liquid cooling battery modules, thermal modeling and comparison of the inter-cell cooling battery module. / The traditional vehicles with internal combustion engine have resulted in severe environmental pollution, which motivates the development of electric vehicles and hybrid electric vehicles. Due to a low energy density and long refueling time of the battery pack, it is still hard for electric vehicles and hybrid electric vehicles to be widely accepted by the consumers. As the batteries with a better ultra-fast charging capability are massively produced, the range anxiety issue is somewhat alleviated. During a charging with large current magnitude, the battery generally has a great amount of heat generation and evident temperature rise. Therefore, a thermal management system is necessary to effectively dissipate the battery loss and minimize the degradation mechanisms caused by extreme temperature. The motivation of this thesis is to study the discipline of the battery thermal management system as an application for electric vehicles. The design methodologies are presented in both experiment test and numerical simulation. For the comparative study between active liquid cooling methods for a lithium-ion battery module using experimental techniques, two battery modules with three Kokam Nickel Manganese Cobalt battery cells connected in parallel are developed. One has liquid coolant flowing along the edge of the model, and another with liquid coolant flowing between the cells. Several characterization tests, including thermal resistance tests, fast charging tests up to 5C, and drive cycle tests are designed and performed on the battery module. The inter-cell cooling module has a lower peak temperature rise and faster thermal response compared to the edge cooling module, i.e., 4.1⁰C peak temperature rise under 5C charging for inter-cell cooling method and 14.2⁰C for edge cooling method. The thermal models built in ANSYS represent the numerical simulation of the inter-cell cooling module as a comparison with the experiment. A cell loss model is developed to calculate the battery heat generation rate under ultra-fast charging tests and a road trip test, which are further adopted as the inputs to the thermal models. The simulation of the 5C ultra-fast charging test gives the peak temperature rise just 0.47⁰C lower than the experimental measurement, it indicates that the FEA thermal models can provide an accurate temperature prediction of the battery module. / Thesis / Master of Applied Science (MASc) / With a demanding market of electric vehicles, battery technologies have grown rapidly in recent years. Among all the battery research topics, the development of ultra-fast charging, that can fully charge the battery pack within 15 minutes, is the most promising direction to address the range anxiety and improve the social acceptance of electric vehicles. Nevertheless, the application of ultra-fast charging has many challenges. In particular, an efficient thermal management system is significant to guarantee the safety and prolong the service life of the battery pack. This thesis contributes to study the fundamentals of the battery field, and design liquid cooling systems to observe the thermal behavior of a battery prototype module under fast charging and general use. FEA thermal modeling of the battery module is developed to provide a guide for further test validation.
7

Modeling, Analysis, and Open-Loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion Engines

Owen, Ross P. 20 October 2011 (has links)
No description available.
8

ONE-DIMENSIONAL HIGH-FIDELITY AND REDUCED-ORDER MODELS FOR THREE-WAY CATALYTIC CONVERTER

Li, Tongrui January 2018 (has links)
To improve the performance of the three-way catalytic (TWC) converter, advanced control strategies and on-board diagnostics (OBD) systems are needed. Both rely on a relatively accurate but computationally efficient TWC converter model. This thesis aims to develop a control-oriented model that can be employed to develop the control strategies and OBD systems of the TWC converter. The thesis consists of two parts, i.e., the high-fidelity model development and the model reduction. Firstly, a high-fidelity model is built using the energy and mass conservation principles. In this model, a constant inlet simulation is used to validate the warming-up characteristics, and a driving cycle simulation is used to calibrate the reaction rate parameters. The results of the simulation show that the high-fidelity model has adequate accuracy. Secondly, a reduced-order model is developed based on phase and reaction simplifications of the high-fidelity model. The aim of the development of the reduced-order model is to propose a computationally efficient model for further development of control strategies and state estimators for OBD systems. The accuracy of the reduced-order model is then validated by means of simulations. / Thesis / Master of Applied Science (MASc)
9

Conceptual design and development of thermal management system for hybrid electric aircraft engine. : A study to develop a physical model and investigate the use of Mobil Jet Oil II as coolant for aircraft electrical propulsion under different scenarios and time horizons.

Khanna, Yash January 2019 (has links)
The ever-increasing levels of greenhouse gas emissions has led to the scientific community starting to explore the viability of electrical aircraft system, with the most prominent research and product development for hybrid electric system, which forms the transition phase from combustion to fully electric aircrafts. The primary objective of this thesis is to find solutions towards thermal management of the electrical components of a hybrid electric aircraft propulsion system, which generate a significant amount of heat while operating at heavy load conditions required to propel an aircraft. In view of these objectives a micro channel cold plate liquid cooling system, has been dynamically modelled using a combination of lumped parameter and thermal resistance methods of heat transfer analysis. The study investigates the prospects of using Mobil Jet Oil II, typically used as an aircraft lubricant as a coolant for the thermal management system. The primary components of this model are lithium ion battery, DC-AC inverter, permanent magnet motor, cross flow finned micro channel heat exchanger, centrifugal pump and ducts. The electrical components have been dimensioned according to energy storage and load requirements considering their efficiencies and gravimetric power/energy. The system has been simulated and analyzed under different scenarios considering the coolant inlet temperature, air temperature across the heat exchanger and on two-time horizons. Analysis has been done to study the dynamic trends of the component temperature and the coolant at different stages of the system. The scope of the study includes an evaluation of the added weight of the thermal management system under different time horizons and their comparison with results from a reference study. From the simulation results it can be concluded that Mobil Jet Oil II is a promising option as a coolant and therefore its use as a common fluid for gas turbine lubrication and as coolant, will benefit the aircraft as now no extra coolant reservoir is required, allowing reduction in weight carried by the aircraft.
10

Hybrid Environmental Control System Integrated Modeling Trade Study Analysis for Commercial Aviation

Parrilla, Javier A. 23 October 2014 (has links)
No description available.

Page generated in 0.1133 seconds