Return to search

Improving Liquid State Machines Through Iterative Refinement of the Reservoir

Liquid State Machines (LSMs) exploit the power of recurrent spiking neural networks (SNNs) without training the SNN. Instead, a reservoir, or liquid, is randomly created which acts as a filter for a readout function. We develop three methods for iteratively refining a randomly generated liquid to create a more effective one. First, we apply Hebbian learning to LSMs by building the liquid with spike-time dependant plasticity (STDP) synapses. Second, we create an eligibility based reinforcement learning algorithm for synaptic development. Third, we apply principles of Hebbian learning and reinforcement learning to create a new algorithm called separation driven synaptic modification (SDSM). These three methods are compared across four artificial pattern recognition problems, generating only fifty liquids for each problem. Each of these algorithms shows overall improvements to LSMs with SDSM demonstrating the greatest improvement. SDSM is also shown to generalize well and outperforms traditional LSMs when presented with speech data obtained from the TIMIT dataset.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-2353
Date18 March 2008
CreatorsNorton, R David
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0022 seconds