Das Hauptziel einer Strahlentherapie, die möglichst vollständige Vernichtung des Tumorgewebes bei einer höchstmöglichen Schonung des umliegenden Gewebes und der Risikoorgane, kann mit Kohlenstoffionen besser als mit Elektronen oder Gammastrahlung erreicht werden. Ionen haben ein inverses Tiefen-Dosisprofil, sie geben einen Großteil ihrer Energie am Ende ihres Weges durch Materie ab. Dieses Energieabgabeverhalten, die wohl definierte Reichweite und die erhöhte biologische Wirksamkeit im Tumor prädestinieren zum Beispiel Kohlenstoffionen für die Behandlung inoperabler, gegen konventionell eingesetzte Strahlung resistenter Tumoren. Allerdings führen diese Eigenschaften der Strahlung auch dazu, dass Veränderungen der Dichte der Materie im Strahlweg zu einer Verschiebung des Maximums der Energieabgabe und damit zu einer deutlichen Veränderung der Dosisverteilung führen. Ein Monitoring der reichweitesensitiven Ionenbestrahlungen ist somit erforderlich. Die Positronen-Emissions-Tomographie (PET), die normalerweise dazu benutzt wird, die Verteilung eines injizierten Positronenemitters im Gewebe zu bestimmen, kann hier eingesetzt werden. Durch Kernreaktionen der einfliegenden Kohlenstoffionen mit Atomkernen des Gewebes kommt es zur Erzeugung von Positronenemittern, die über ihren Zerfall mit dem an der experimentellen Therapieanlage an der Gesellschaft für Schwerionenforschung installierten in-beam PET-Scanner nachgewiesen werden können. Da die Dosisverteilung und die erzeugte Aktivitätsverteilung durch verschiedene physikalische Prozesse bedingt sind, ist ein direkter Vergleich der PET-Messung mit der von den Ärzten und Medizinphysikern festgelegten Dosisverteilung nicht möglich. Aus der Dosisverteilung und dem Zeit-ablauf der Bestrahlung wird eine Vorhersage der Aktivitätsverteilung berechnet, die dann mit der Messung verglichen wird. Auf der Grundlage dieses Vergleiches ist die in-beam PET-Methode in der Lage, während der Behandlung Reichweiteabweichungen im Patienten, Ungenauigkeiten in der Positionierung und auch Fehler im physikalischen Strahlmodell aufzuzeigen. Trotz einer guten Anpassung der in der Vorausberechnung verwendeten physikalischen Modelle an die Realität kommt es zu Abweichungen, die nicht mit einer ungenauen Dosisapplikation begründbar sind. Diese sind zum größten Teil durch die metabolischen Vorgänge im Patienten bedingt, an denen die Positronenemitter teilnehmen. Diese Washout-Prozesse sind zwischen verschiedenen Patienten und verschiedenen Behandlungstagen nicht reproduzierbar. Im Rahmen der vorliegenden Arbeit wurde eine Quantifizierung des Washouts in Abhängigkeit verschiedener Parameter vorgenommen, deren Berücksichtigung zur Verbesserung der Vorausberechnung führt. Um eine flexiblere Positionierung des Patienten am raumfesten Bestrahlungssystem der GSI zu ermöglichen, wurde an der GSI ein Bestrahlungsstuhl entwickelt. Um auch bei der Bestrahlung sitzender Patienten eine in-beam PET-Messung zu ermöglichen, sind die beiden Detektor-Einheiten der PET-Kamera um die Strahlachse drehbar. Durch die hohe Eigenmasse der Detektoren kommt es jedoch zu Deformationen der idealen Kreisbahn. Um eine ortsgenaue Rekonstruktion der Daten zu ermöglichen, müssen diese Deformationen quantifiziert und korrigiert werden. Dies war ein weiteres Anliegen dieser Arbeit. Das wichtigste Ziel der vorliegenden Dissertation jedoch war, die in-beam PET-Methode auf neue Ionensorten zu erweitern. Es wurde gezeigt, dass die in-beam PET-Methode auch für 3He-Bestrahlungen angewendet werden kann. Dafür wurden Experimente an einem 3He-Strahl durchgeführt. Die Aktivitätsausbeute ist bei gleicher applizierter Dosis etwa dreimal so hoch wie bei 12C-Bestrahlungen. Die erreichbare Reichweite-Auflösung ist kleiner als 1 mm. Bei der Bestrahlung eines inhomogenen Phantoms wurde gezeigt, dass ein Kontrast zwischen verschiedenen Materialien auflösbar ist. Aus den experimentell bestimmten Reaktionsraten wurden Wirkungsquerschnitte für zu Positronenemittern führende Reaktionen abgeschätzt. Die in den 3He-Experimenten genommenen Daten wurden denen in Kohlenstoff-Ionen-Experimenten gewonnen sowie Literaturdaten für Protonenbestrahlungen gegenübergestellt. Ein Vergleich mit den Rechnungen des Simulationsprogrammes Shield-Hit erfolgte. Eine Zusammenstellung von Wirkungsquerschnittsmodellen und die aufgestellten Anforderungen an ein für in-beam PET verwendbares Simulationsprogramm sind vorbereitend für weitere Arbeiten.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24074 |
Date | 19 February 2008 |
Creators | Fiedler, Fine |
Contributors | Grosse, E., Enghardt, W., Kraft, G. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds