Return to search

Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz / Finite Elements and Finite Difference Methods for the Helmholtz Equation

Made available in DSpace on 2015-03-04T18:51:06Z (GMT). No. of bitstreams: 1
tese_danieltf.pdf: 1240547 bytes, checksum: d1fac8fed2c288c3581c57065cf2c0c2 (MD5)
Previous issue date: 2009-03-02 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / It is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babus\v ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM. / É bem sabido que métodos clássicos de elementos finitos e diferenças finitas para o problema de Helmholtz apresentam efeito de poluição, que pode deteriorar seriamente a qualidade da solução aproximada. Controlar o efeito de poluição é especialmente difícil quando são utilizadas malhas não uniformes. Para malhas uniformes com elementos quadrados são conhecidos métodos (p. e. o QSFEM, proposto por Babuska et al) que minimizam a poluição. Neste trabalho apresentamos inicialmente dois métodos de elementos finitos de Petrov-Galerkin com formulação relativamente simples, o RPPG e o QSPG, ambos com razoável robustez para certos tipos de distorções dos elementos. O QSPG apresenta ainda poluição mínima para elementos quadrados. Em seguida é formulado o QOFD, um método de diferenças finitas aplicável a malhas não estruturadas. O QOFD apresenta grande robustez em relação a distorções, mas requer trabalho extra para tratar problemas não homogêneos ou condições de contorno não essenciais. Finalmente é apresentado um novo método de elementos finitos de Petrov-Galerkin, o QOPG, que é formulado aplicando a mesma técnica usada para obter a estabilização do QOFD, obtendo assim a mesma robustez em relação a distorções da malha, com a vantagem de ser um método variacionalmente consistente. Resultados numéricos são apresentados ilustrando o comportamento de todos os métodos desenvolvidos em comparação com os métodos de Galerkin, GLS e QSFEM.

Identiferoai:union.ndltd.org:IBICT/oai:tede-server.lncc.br:tede/98
Date02 March 2009
CreatorsFernandes, Daniel Thomas
ContributorsLoula, Abimael Fernando Dourado, Valentin, Fréderic Gerard Christian, Madureira, Alexandre Loureiro, Carmo, Eduardo Gomes Dutra do, Rochinha, Fernando Alves, Oliveira, Saulo Pomponet
PublisherLaboratório Nacional de Computação Científica, Programa de Pós-Graduação em Modelagem Computacional, LNCC, BR, Serviço de Análise e Apoio a Formação de Recursos Humanos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações do LNCC, instname:Laboratório Nacional de Computação Científica, instacron:LNCC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds