Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-07-26T12:29:23Z
No. of bitstreams: 1
pedroandrearroyosilva.pdf: 4154699 bytes, checksum: 1875b7d54dd015591fcdd55db287ee37 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-03T16:20:02Z (GMT) No. of bitstreams: 1
pedroandrearroyosilva.pdf: 4154699 bytes, checksum: 1875b7d54dd015591fcdd55db287ee37 (MD5) / Made available in DSpace on 2018-09-03T16:20:02Z (GMT). No. of bitstreams: 1
pedroandrearroyosilva.pdf: 4154699 bytes, checksum: 1875b7d54dd015591fcdd55db287ee37 (MD5)
Previous issue date: 2018-04-23 / A formação de padrões espaço-temporais são observados em processos químicos e bio-lógicos. Apesar dos sistemas bioquímicos serem altamente heterogêneos, aproximações homogenizadas contínuas formadas por equações diferenciais parciais são utilizadas fre-quentemente. Estas aproximações são usualmente justificadas pela diferença de escalas entre as heterogeneidades e o tamanho da característica espacial dos padrões. Em certas condições do meio, por exemplo, quando há um acoplamento fraco entre as células car-díacas, os modelos homogenizados discretos são mais adequados. Entretanto, os modelos discretos são menos manejáveis, por exemplo, na geração de malha para 2D e 3D, se comparado com os modelos contínuos. Aqui estudamos um modelo matemático homoge-nizado contínuo que se aproxima do modelo homogenizado. Este modelo é dado a partir de equações diferencias parciais com um parâmetro que depende da discretização da ma-lha. Dessa maneira nos referimos a este por um modelo matemático com parâmetros que dependem da discretização. Validamos nossa aproximação em um meio excitável genérico que simula três fenômenos em 1D: a propagação do potencial de ação transmembrânico no tecido cardíaco, a propagação do potencial de ação em filamentos de axônios cobertos por bainhas de mielina e a propagação do ativador e inibidor em microemulsões químicas. Para o caso 2D desenvolvemos uma versão da nossa aproximação que reproduz ondas espirais em um meio com acoplamento fraco. / The spatio-temporal patterns formations are observed in chemical and biological pro-cesses. Although biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. These approaches are usually justified by the difference scales between the characteristic spatial size of the patterns. Under some conditions of the medium, for instance, under weak coupling between cardiac cells, discrete models are more adequate. On the other hand discrete models may be less manageable, for instance, in terms of mesh generation, com-pared to the continuum models. Here we study a mathematical model to approach the discreteness which permits the computer implementation on non-uniform meshes. The model is cast as a partial differential equation but with a parameter that depends on the discretization mesh. Therefore we refer to it as a mathematical model with parameters dependent of discretization. We validate the approach in a generic excitable media that simulates three different phenomena in 1D: the propagation of action potential in car-diac tissue, the propation of the action potentialin filaments of axons wrapped by myelin sheaths, and the propagation of the activator/inhibitor in chemical microemulsions. For the 2D case we develop a version to this approach in microemulsions where it was possible to reproduce spiral waves with weak coupling of the medium.
Identifer | oai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/7194 |
Date | 23 April 2018 |
Creators | Silva, Pedro André Arroyo |
Contributors | Santos, Rodrigo Weber dos, Alonso, Sergio, Bevilacqua, Luiz, Loula, Abimael Fernando Dourado, Toledo, Elson Magalhães |
Publisher | Universidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Modelagem Computacional, UFJF, Brasil, ICE – Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds