If released in significant amounts, products formed by reactions between ozone (O3) and volatile organic compounds (VOCs) sorbed on activated carbon (AC) filters could degrade indoor air quality (IAQ). Heterogeneous reactions were investigated in laboratory experiments aimed at characterizing reaction products. Effluent air of AC loaded with limonene and exposed to O 3 (5.8 ppm) yielded unreacted limonene (501 ± 197 μg/m 3), low levels of 4-acetyl-1-methylcyclohexene (AMCH) (20 ± 2 μg/m3), and limonene oxides (25 ± 7 μg/m3). Most of the O3-limonene products remained on the AC, and most (58%) of the limonene remained unreacted on the AC after exposure to a stoichiometric excess of O3 for 48 h. Thus, in addition to known homogenous reactions, O3-limonene reactions occur heterogeneously on AC but to a much lesser extent. However, the fate of 95% of the depleted limonene was not determined; much of the missing portion was attributed to desorption from the AC, but the formation of other secondary indoor air pollutants is possible. VOC-loaded AC air filters exposed to O3 seem unlikely, however, to constitute a significant emission source of reaction products. More studies are necessary to investigate other pollutants, effects of environmental conditions, and VOC releases from AC that may be enhanced by O3 exposure.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-19025 |
Date | 01 October 2007 |
Creators | Metts, T. A. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0018 seconds