• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 41
  • 37
  • 17
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 366
  • 366
  • 183
  • 139
  • 81
  • 63
  • 59
  • 45
  • 43
  • 40
  • 39
  • 36
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of treated timber sources of pesticide contaminants using source modelling techniques

Spalding, Duncan Robert January 1999 (has links)
No description available.
2

The adaptive coupling of heat and air flow modelling within dynamic whole-building simulation

Beausoleil-Morrison, Ian David January 2000 (has links)
This thesis is concerned with advancing the modelling of indoor air flow and internal surface convection within dynamic whole-building simulation. The path taken is the conflation of computational fluid dynamics (CFD) techniques with dynamic whole-building simulation, with an accurate treatment of the co-dependencies between these modelling domains. Two flow responsive modelling techniques were devised and implemented within the ESP-r simulation program to achieve the research objectives. The adaptive convection algorithm enhances ESP-r's thermal simulation domain by dynamically controlling the simulation of internal surface convection. Empirical methods were extracted from the literature and a new method for characterizing mixed flow convective regimes was created to provide the algorithm with a basis of 28 convection coefficient correlations. Collectively these methods can calculate convection coefficients for most flows of practical interest. Working with this suite of correlations, the algorithm assigns appropriate equations to each internal surface and adapts the selection in response to the room's evolving flow regime. The adaptive conflation controller manages all interactions between the thermal and CFD modelling domains. The controller incorporates the latest turbulence modelling advancements applicable for room air flow simulation and possesses a suite of handshaking and thermal boundary condition treatments. The job of this adaptive conflation controller is to monitor the evolving thermal and air flow conditions in the room and dynamically select an appropriate combination of modelling approaches for the prevailing conditions. The two control schemes implemented to demonstrate the controller make use of a double-pass modelling approach. Each time-step that the thermal domain handshakes with CFD, the adaptive conflation controller performs an investigative simulation to approximate the room's flow and temperature field. Using these estimates, the controller calculates dimensionless groupings to determine the nature of the flow (forced, buoyant, mixed, fully turbulent, weakly turbulent) adjacent to each internal surface. This information is used to select suitable boundary condition treatments for each surface. A second CFD simulation is then performed using the refined modelling approach to more accurately resolve the room's air flow and temperature distribution, and to predict surface convection. In order to protect the thermal domain, a two-stage screening process is used to assess (and where necessary reject) the CFD-predicted surface convection estimates. These adaptive modelling techniques advance the modelling of indoor air flow and internal surface convection within whole-building simulation.
3

Aspergillus parasiticus and Coriolus versicolor growth studies in the presence of naphthalene and formaldehyde : fungal growth as a source of, and monitoring system for, sick building syndrome

O'Brien, Geraldine January 2003 (has links)
No description available.
4

Fine particle formation in indoor environments levels, influencing factors and implications /

Sarwar, Md Golam. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
5

The concept of healthy buildings /

Fung, Kar-lai, Carrie. January 1900 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 146-153).
6

Reference values for building material emissions and indoor air quality in residential buildings /

Järnström, Helena. January 1900 (has links) (PDF)
Thesis (doctoral)--University of Kuopio, 2008. / Includes bibliographical references. Also available on the World Wide Web.
7

A two-zone model to predict inhalation exposure to toxic chemicals in cleaning products

Earnest, Clive Matthew, Jr. 03 September 2009 (has links)
The use of cleaning products can lead to indoor concentrations of toxic air contaminants above regulatory levels. Studies show that the use of cleaning products is related to adverse respiratory health effects in adults ranging from irritation to asthma. Yet exposure to these chemicals is poorly understood. This thesis summarizes the current state of knowledge of inhalation exposure to toxic chemicals in consumer cleaning products. A new two-compartment model that treats personal air space as distinct from bulk room air is presented. The model accounts for air exchange between the two compartments and fresh air, dynamic source characteristics (i.e., the time-varying liquid concentrations and emission rates of pollutants within a mixture), the characteristics of chemical use (e.g., how frequently a cleaning chemical is applied to a new area), and reactive chemistry with ozone. The model’s applicability is restricted by limited data available for parameterization. Key components that are missing include composition data for consumer cleaning products and activity patterns. Extensive effort went into calculating the air exchange rate between the two zones. Twelve computational fluid dynamic simulations and two model scenarios were completed. The predicted concentration in the inner-zone (Cin) was divided by the room concentration predicted by the traditional well-mixed model (Cwm). Concentration ratios (Cin/Cwm) ranged from 1.1 to 700. In terms of real cleaning events, results indicate that the beginning (where the only emission source is near the person) of events taking place in large indoor environments with high air exchange rates are the situations for which well-mixed models are most likely to fail in predicting actual exposures. / text
8

Photocatalytic degradation of NOX, VOCs, and chloramines by TiO2 impregnated surfaces

Land, Eva Miriam 07 July 2010 (has links)
Experiments were conducted to determine the photocatalytic degradation of three types of gas-phase compounds, NOX, VOCs, and chloramines, by TiO2 impregnated tiles. The oxides of nitrogen NO and NO2 (NOx) have a variety of negative impacts on human and environmental health ranging from serving as key precursors for the respiratory irritant ozone, to forming nitric acid, which is a primary component of acid rain. A flow tube reactor was designed for the experiments that allowed the UV illumination of the tiles under exposure to both NO and NO2 concentrations in simulated ambient air. The reactor was also used to assess NOx degradation for sampled ambient air. The PV values for NO and NO2 were 0.016 cm s-1 and 0.0015 cm s-1, respectively. For ambient experiments a decrease in ambient NOx of ~ 40% was observed over a period of roughly 5 days. The mean PV for NOx for ambient air was 0.016 cm s-1 and the maximum PV was .038 cm s-1. Overall, the results indicate that laboratory conditions generally simulate the efficiency of removing NOx by TiO2 impregnated tiles. Volatile organic compounds (VOC's) are formed in a variety of indoor environments, and can lead to respiratory problems (US EPA, 2010). The experiments determined the photocatalytic degradation of formaldehyde and methanol, two common VOCs, by TiO2 impregnated tiles. The same flow tube reactor used for the previous NOX experiments was used to test a standardized gas-phase concentration of formaldehyde and methanol. The extended UV illumination of the tiles resulted in a 50 % reduction in formaldehyde, and a 68% reduction in methanol. The deposition velocities (or the photocatalytic velocities, PV) were estimated for both VOC's. The PV for formaldehyde was 0.021 cm s-1, and the PV for methanol was 0.026 cm s-1. These PV values are slightly higher than the mean value determined for NO from the previous experiments which was 0.016 cm s-1. The results suggest that the TiO2 tiles could effectively reduce specific VOC levels in indoor environments. Chlorination is a widespread form of water disinfection. However, chlorine can produce unwanted disinfection byproducts when chlorine reacts with nitrogen containing compounds or other organics. The reaction of chlorine with ammonia produces one of three chloramines, (mono-, di-, and tri-chloramine). The production of chloramines compounds in indoor areas increases the likelihood of asthma in pool professionals, competitive swimmers, and children that frequently bath in indoor chlorinated swimming pools (Jacobs, 2007; Nemery, 2002; Zwiener, 2007). A modified flow tube reactor in conjunction with a standardized solution of monochloramine, NH2Cl, determined the photocatalytic reactions over the TiO2 tiles and seven concrete samples. The concrete samples included five different concrete types, and contained either 5 % or 15 % TiO2 by weight. The PV for the tiles was 0.045 cm s-1 for the tiles manufactured by TOTO Inc. The highest PV from the concrete samples was 0.054 cm s-1. Overall the commercial tiles were most efficient at reducing NH2Cl, compared to NOX and VOC compounds. However, the concrete samples had an even higher PV for NH2Cl than the tiles. The reason for this is unknown; however, distinct surface characteristics and a higher concentration of TiO2 in the concrete may have contributed to these findings.
9

Field and laboratory investigation of ozone-indoor surface reactions: secondary emissions inventory and implications for indoor air quality

Wang, Hong, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 6, 2008) Includes bibliographical references (p. 140-144).
10

Developing ozone dispersion and reaction models and conducting a thermodynamic study for safety evaluations of an indoor air pollution abatement pilot plant /

Rao, Surya, January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references. Also available via the Internet.

Page generated in 0.0526 seconds