Return to search

Production of high-strength Al-based alloys by consolidation of amorphous and partially amorphous powders

In this thesis, novel bulk Al-based alloys with high content of Al have been produced by powder metallurgy methods from amorphous and partially amorphous materials. Different processing routes, i.e. mechanical alloying of elemental powder mixtures, controlled pulverization of melt-spun glassy ribbons and gas atomization, have been employed for the production of the Al-based powders. Among the different processing routes, gas atomization is the best choice for the production of Al-based amorphous and partially amorphous powders as precursors for the subsequent consolidation step because it allows the production of large quantities of powders with homogeneous properties (e.g. structure and thermal stability) along with a uniform size distribution of particles.
Amorphous and nanocrystalline powders have to be consolidated to achieve dense bulk specimens. However, consolidation of these phases is not an easy task and special care has to be taken with respect to accurate control of the consolidation parameters in order to achieve dense bulk specimens without inducing undesirable microstructural transformations (e.g. crystallization and grain coarsening) or insufficient particle bonding. Consequently, the effect of temperature on viscosity as well as on phase formation has been studied in detail in order to select the proper consolidation parameters.
Following their characterization, the Al-based powders have been consolidated into bulk specimens by hot pressing (HP), hot extrusion and spark plasma sintering (SPS) and their microstructure and mechanical properties have been extensively investigated. Consolidation into highly-dense bulk samples cannot be achieved without extended crystallization of the glassy precursors. Nevertheless, partial or full crystallization during consolidation leads to remarkable mechanical properties. For example, HP Al84Gd6Ni7Co3 samples display a remarkably high strength of about 1500 MPa, which is three times larger than the conventional high-strength Al-based alloys, along with a limited but distinct plastic deformability (3.5 – 4%). Lower strength (930 MPa) but remarkably larger plastic strain exceeding 25 % has been achieved for the Al87Ni8La5 gas-atomized powders consolidated by SPS above their crystallization temperature. Similarly, HP Al90.4Y4.4Ni4.3Co0.9 bulk samples display high compression strength ranging between 820 and 925 MPa combined with plastic strain in the range 14 – 30%. Finally, preliminary tensile tests for the Al90.4Y4.3Ni4.4Co0.9 alloy reveal promising tensile properties comparable to commercial high-strength Al-based alloys. The mechanical behavior of the consolidated specimens is strictly linked with their microstructure. High strength and reduced plasticity are observed when a residual amorphous phase is present. On the other hand, reduced strength but enhanced plastic deformation is a result of the complete crystallization of the glass and of the formation of a partially or fully interconnected network of deformable fcc Al.
These results indicate that the combined devitrification and consolidation of glassy precursors is a particularly suitable method for the production of Al-based materials characterized by high strength combined with considerable plastic strain. Through this method, the mechanical properties of the consolidated samples can be varied within a wide range of strength and ductility depending on the microstructure and the consolidation techniques used. This might open a new route for the development of innovative high-performance Al-based materials for transport applications.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-69359
Date28 June 2011
CreatorsSurreddi, Kumar Babu
ContributorsTechnische Universität Dresden, Fakultät Maschinenwesen, Professor Jürgen Eckert, Professor Jürgen Eckert, Professor Bernd Kieback, Professor N. K. Mukhopadhyay
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0028 seconds