Spelling suggestions: "subject:"bezahlen"" "subject:"bondzahlen""
1 |
Herstellung dotierter Nanodiamantpartikel und ihre Funktionalisierung mit schwefelhaltigen Gruppen / Synthesis of doped nanodiamonds and their functionalization with sulfur-containing groupsHeyer, Steffen January 2015 (has links) (PDF)
In dieser Dissertation werden Methoden zur Darstellung von Stickstoff- und Bor-dotierten Nanodiamantpartikeln durch Vermahlung von makroskopischem HPHT- und CVD-Diamant mit unterschiedlichen Mühlen und Mahlverfahren beschrieben. Untersucht wird dabei der Zusammenhang von erzielten Teilchengrößen nach dem Mahlen und den Kristallitgrößen der Ausgangsdiamanten sowie der angewandten Mahlmethode. Durch Anwendung verschiedener oxidativer Methoden wird während des Mahlens entstehender sp2-Kohlenstoff entfernt. Ebenfalls wird deren Einfluss auf das Fluoreszenzverhalten NV-haltiger Nanodiamantpartikel analysiert.
Des Weiteren werden Syntheserouten zur kontrolliert ablaufender Oberflächenflächenfunktionalisierung von Nanodiamant mit schwefelhaltigen Gruppen wie Thiolen, Trithiocarbonaten und Disulfiden gezeigt, welche eine selektive Anbindung der Diamantpartikel an Goldstrukturen ermöglicht. Diese Verfahren werden an Detonationsdiamant sowie fluoreszierendem HPHT- und CVD-Diamantpartikeln angewandt. Gegebenfalls kann nach erfolgreicher Anbindung fluoreszierender Nanodiamantpartikel an Goldnanostrukturen unter Ausnutzung von Plasmonenresonanz die einzigartigen Spineigenschaften der NV-Zentren mit Hinblick auf einen möglichen Einsatz Stickstoff-dotierter Diamantnanopartikel in der Quanteninformationsverarbeitung untersucht werden. / This dissertation presents methods to create nitrogen and boron doped nanodiamond particles by milling macroscopic HPHT- and CVD-diamond in different milling procedures. In this context, the correlation between resulting particle sizes after the milling with the crystallite sizes of the diamond starting material and the applied milling method is investigated. By application of different oxidative methods, sp2 carbon, that was created in the milling process, can be removed. In addition, the influence of the oxidation processes on the fluorescence properties of NV-are analysed.
Furthermore, synthetic pathways for a controlled surface grafting of nanodiamond with sulfur containing groups like thiols, trithiocarbonates and disulfides which enable the functionalized diamonds to bind selectivly on gold surfaces are developed within this thesis. The syntheses are applied to detonation diamond aswell as fluorescent HPHT- and CVD-diamond. After a successful attachment of the functionalized nanodiamonds to goldnanostructures, the unique spinproperties of NV-centers can be studied with regard to a possible application of N-doped diamond nanoparticles in quantum computing.
|
2 |
Vermahlungstechnische Untersuchungen mit Roggen und Triticale aus dem Anbau reduzierter Intensität zur Herstellung stärkeangereicherter Mahlprodukte für deren Einsatz zur chemischen ModifizierungThamm, Lydia. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Berlin.
|
3 |
Auswirkungen von Vorhydratation auf die Leistungsfähigkeit von Zementen unter Berücksichtigung verschiedener KlinkereigenschaftenBöhm, Matthias 28 November 2023 (has links)
In Deutschland werden derzeit zur Zementmahlung meist Kugelmühlen eingesetzt (über 100 Mühlen, teilweise über 40 Jahre alt). Die Fertigmahlung von Zementen auf deutlich energieeffizienteren Vertikal-Wälzmühlen ist international insbesondere bei Neubauprojekten bereits heute verbreitet, wird in Deutschland jedoch kaum praktiziert (weniger als fünf Mühlen). Ein Grund dafür sind immer noch fehlende Kenntnisse, wie durch den Mahlbetrieb in Vertikal-Wälzmühlen auftretende Veränderungen der Zementeigenschaften durch Vorhydratation systematisch entgegengewirkt werden kann, um möglichst gleiche Zementeigenschaften wie von auf Kugelmühlen hergestellten Zementen zu erhalten.
Das Forschungsvorhaben verfolgte zwei Ziele. Zum ersten sollte untersucht werden, ob bestimmte zementchemische Eigenschaften einen Klinker robuster gegenüber einer Vorhydratation machen. Dazu wurde im Versuchsprogramm eine Auswahl unterschiedlicher Klinker verwendet, die ein breites mineralogisches Spektrum abdeckt. Es sollte geklärt werden, in welcher Größenordnung sich die Effekte einer Vorhydratation in Abhängigkeit vom Klinker, seiner Feinheit und der Intensität der Vorhydratation bei Hydratationsreaktionen und Zementeigenschaften bemerkbar machen. Klinkermehle wurden systematisch vorhydratisiert. Aus den entstandenen Materialien wurden Laborzemente hergestellt, deren Hydratationsreaktionen und Normeigenschaften charakterisiert wurden.
Zum zweiten sollte untersucht werden, mit welchen Maßnahmen möglichen negativen Auswirkungen entgegengewirkt werden kann, insbesondere durch Anpassung der Sulfatträgerzusammensetzung. Dazu wurden aus ausgewählten vorhydratisierten Klinkern Serien an Laborzementen mit unterschiedlicher Sulfatträgerzusammensetzung hergestellt und untersucht.
Besonders die kleinen und mittelständischen Unternehmen der deutschen Zementindustrie würden dadurch in ihrer Wettbewerbsfähigkeit gestärkt, da sie nicht auf Erfahrungen mit Vertikal-Wälzmühlen an anderen Standorten zurückgreifen können, um Investitionsentscheidungen zu treffen oder Strategien zur Optimierung von Zementen zu entwickeln.
|
4 |
Untersuchung der separaten Feinstmahlung von Zementen zur Verbesserung der Energieeffizienz und der ZementeigenschaftenFleiger, Philipp, Treiber, Kevin 28 November 2023 (has links)
Die Zementmahlung ist energieintensiv. Verfahrenstechnische Optimierung und optimale Nutzung von Mahlaggregaten verbessern die Effizienz des Zerkleinerungsprozesses maßgeblich. Den Anforderungen des europäischen Marktes werden die Produkte aus hocheffizienten Mahlanlagen allerdings nicht vollständig gerecht.
Ein weiterer Freiheitsgrad in der Produktion durch Einführung separater Feinstmahlung wurde in der Zementindustrie bislang nicht realisiert. Gezielter Einsatz von Feinst- und Grobanteilen verbessert die Raumausfüllung der Zementschüttung und damit die Zementeigenschaften bedeutend. Der Energiebedarf bei mehrstufiger, angepasster Feinstzerkleinerung wird gesenkt. Die Steuerung von Hydratationsablauf und Festigkeitsentwicklung wird durch praxisnahe Beeinflussung der Korngrößenverteilung ermöglicht. Kleine Feinstmahlaggregate sind weniger kapitalintensiv und die Mischung mit hochfein aufgemahlenen Anteilen kann direkt in vorhandenen Mischeinrichtungen umgesetzt werden. Die Modellierung von Mischungen ermöglicht tiefergehende Erkenntnisse der Auswirkung von Kornform und Korngrößenverteilung auf die Raumausfüllung und damit auf die Zementeigenschaften.
Das Design von Korngrößenverteilungen kann dauerhaft den Einsatz von neuen Bestandteilen im Zement fördern. Die Zementeigenschaften werden optimiert, die CO2-Bilanz durch Klinkersubstitution verbessert und nachhaltigere Nutzung von Ressourcen ermöglicht.
|
5 |
Deutsch-Polnischer-Workshop: Analyse der Aufbereitungsbedingungen und der Eigenschaftscharakteristik von Kompositwerkstoffen der Typen Kunststoffe und TSE-GummimehlMennig, Günter, Michael, Hannes 15 November 2006 (has links) (PDF)
Bei der Wiederverwertung von Alt- und Abfallgummi
stehen Industrie und Forschung im Gegensatz zu den
rein thermoplastischen Kunststoffen wie Polypropylen
und Polyäthylen immer noch am Anfang. Große Mengen
der roh- und werkstofflich wertvollen (Technischen
und Sonstigen Elastomerartikel, sogen. TSE-Gummiab-
fälle (ca. 400 T Jahrestonnen) werden gegenwärtig
noch in Zementöfen und E-Werken verbrannt (thermisch
entsorgt).
Die werkstoffliche Aufbereitung, d.h. das Mahlen
zu Gummigranulat bzw. -mehl ermöglicht es, inbesondere
verstärkungsmittelfreies Gummimehl sehr kleiner
Partikelgrößen (<0,4 mm) in einem speziellen reaktiven
Mischverfahren mit Kunststoffen zu Kompositwerkstoffen
(Blends und Elastomerlegierungen) zu verarbeiten.
In den Elastomerlegierungen ist das Gummimehl chemisch
und physikalisch mit der Kunststoffmarix gekoppelt.
Deshalb kommen diese Kompositwerkstoffe in ihren
Eigenschaften den der TPE (Thermoplastische Elastomere)
sehr nahe.
Das Projekt untersucht Einflüsse verschiedener Mahl-
prozesse auf die Qualität des Gummimehls und versucht
das Mischverhältnis der Ausgangskomponenten und den
Mischprozeß zu optimieren. Als Qualitätskriterien
für diese experimentellen und theoretischen Arbeiten
gelten verschiedene mechanisch-physikalische Eigenschaften
von Formteilen, die nach unterschiedlichen Verarbeitungs-
methoden (Extrudieren, Formpressen, Spritzgießen)
aus den Kompositwerkstoffen hergestellt wurden.
Die Arbeitsgruppe um Dr. Michael von der TU Chemnitz
prüft die Eignung der Gummimehle, die nach dem noch
weitgehend unbekannten und von dem polnischen Projekt-
partner entwickelten Mahlverfahren, der sogen. SSSP-
Methode (Solid-State Shear Pulverisation) hergestellt
wurden, betreffs ihres Einsatzes als Hauptrezepturkomponente
in Elastomerlegierungen und speziellen Blends.
Im SSSP-Zerkleinerungsprozeß werden die Gummiwerkstoffe
höchsten Scherkräften ausgesetzt. Die dadurch ent-
stehenden inneren Spannungen führen zur Zerkleinerung
des Gummis in feinste Partikel (0,1 …0,3mm) jedoch mit
sehr großen Oberflächen.
Sowohl die TU Chemnitz als auch die ATL Bydgoszcz
sind in der TPE-Forschung, ein Markt mit wachsender
Nachfrage, seit Jahren sehr erfolgreich. Ziel des
Projektes ist es, zusammen mit dem Fraunhofer Institut
UMSICHT Oberhausen, der Greiner RUBBERTEC GmbH Nürtingen
und weiteren Firmen der Gummiindustrie Kompetenzen
zusammenzuführen und somit neue Erkenntnisse auf dem
Gebiet des Kunststoff- und Gummirecyclings zu gewinnen,
die kurzfristig in die Praxis umgesetzt werden können.
Das Projekt wird als Auftakt gemeinsamer Forschungs-
kooperationen verstanden und wird im Rahmen einer
gemeinsamen Ausschreibung des Auswärtigen Amtes und
des BMBF zum Deutsch-Polnischen Jahr 2005/2006 mit
Mitteln des BMBF gefördert.
|
6 |
Mechanical milling of Al-Cu-Fe quasicrystals and their Reinforcement in Aluminum matrix compositesAli, Fahad 11 April 2012 (has links) (PDF)
In this thesis, the effect of mechanical deformation on structure, thermal stability and hardness of a single-phase spray-deposited quasicrystalline alloy with composition Al62.5Cu25Fe12.5 has been investigated in detail. The purpose of the investigation was to study the effect of mechanical milling at different milling speeds (which approximately scale with the milling intensity) on mechanically-induced phase transformations during milling and on the phase evolution during subsequent heating.
The results of the milling experiments indicate that, irrespective of the milling speeds used, mechanical milling of Al62.5Cu25Fe12.5 quasicrystals leads to the formation of a disordered CsCl-type ß phase with grain size of about 10 – 20 nm. The analysis of the kinetics of the QC–to–ß phase transformation reveals that the milling intensity has a considerable effect on the characteristics of the transformation. The increase of the milling speed considerably shortens the incubation time needed to start the QC–to–ß phase transformation. Also, the overall transformation is much faster for milling at high speeds.
The QC–to–ß phase transformation starts when the grain size of the quasicrystals is reduced to about 10 nm irrespective of the milling speed used and clearly indicates that a critical grain size of the quasicrystals for initiating the transformation exists. On the other hand, no critical value of lattice strain was found for the QC–to–ß transformation. This indicates that the phase transformation is controlled by the local length scale (i.e. the grain size) and by the corresponding grain boundaries rather than by the energy stored in the lattice.
Energetic considerations obtained through a simple model based on the mass and velocity of the milling balls reveal that the energy needed for the QC–to–ß transformation increases with increasing the milling speed, that is, the energetic efficiency of the process decreases with increasing the milling intensity. This indicates that part the extra energy supplied during milling at high intensities is not used to induce the phase transformation but it is dissipated by heat.
During heating, the milled powder displays a multi-step thermal behavior characterized by the grain growth of the disordered ß phase at low temperatures, followed, at higher temperatures, by its transformation into the original icosahedral quasicrystalline phase. The transformation is gradual and the quasicrystals and the disordered ß phase coexist over a temperature interval of more than 250 K.
The phase transformations occurring during milling and subsequent annealing have a remarkable effect on the hardness, which can be tuned within a wide range of values (7–9.6 GPa) as a function of the volume fraction of the different phases. This suggests that a composite material with optimized mechanical properties can be produced by an appropriate thermo-mechanical treatment.
The quasicrystals milled at a very low speed show a transition between Hall-Petch to inverse Hall-Petch behavior at a grain size of about 40 nm, which represents the critical value for grain size softening of the present Al62.5Cu25Fe12.5 quasicrystals. This behavior may be attributed to the complexity of the quasicrystalline structure and to its peculiar deformation mechanism at room temperature (i.e. shear banding), where meta-dislocation-assisted deformation is almost absent.
In order to analyze the effectiveness of the Al62.5Cu25Fe12.5 quasicrystals as reinforcing agent in metal matrix composites, Al-based composites were synthesized by hot extrusion of elemental Al blended with different amounts of Al62.5Cu25Fe12.5 quasicrystalline particles. The work was focused on two specific aspects: evaluation of the mechanical properties through room temperature compression tests and modeling of the resulting properties. The addition of the quasicrystalline reinforcement is very effective for improving the room temperature mechanical properties of pure Al. The compressive strength increases from 155 MPa for pure Al to 330 and 407 MPa for the composites with 20 and 40 vol.% of reinforcement, respectively, reaching an ultimate strain of 55 % and 20 % before fracture occurs. These results indicate that the addition of the QC reinforcement leads to composite materials with compressive strengths exceeding that of pure Al by a factor of 2 – 2.5, while retaining appreciable plastic deformation.
The mechanical properties of the composites have been modeled by taking into account the combined effect of load bearing, dislocation strengthening and matrix ligament size effects. The calculations are in very good agreement with the experimental results and reveal that the reduction of the matrix ligament size, which results in a similar strengthening effect as that observed for grain refinement, is the main strengthening mechanism in the current composites.
Finally, the interfacial reaction between the Al matrix and the QC reinforcement has been used to further enhance the strength of the composites through the formation of a new microstructure consisting of the Al matrix reinforced with Al7Cu2Fe w-phase particles. The optimization of the structure-property relationship was done through the systematic variation of the processing temperature during consolidation. The mechanical behavior of these transformation-strengthened composites is remarkably improved compared to the parent material. The yield strength of the composites significantly increases as the Al + QC -> ω transformation progresses from 195 MPa for the sample reinforced only with QC particles to 400 MPa for the material where the Al + QC -> ω reaction is complete.
These results clearly demonstrate that powder metallurgy, i.e. powder synthesis by ball milling followed by consolidation into bulk specimens, is an attractive processing route for the production of novel and innovative lightweight composites characterized by high strength combined with considerable plastic deformation. In addition, these findings indicate that the mechanical behavior of Al-based composites reinforced with Al62.5Cu25Fe12.5 quasicrystalline particles can be tuned within a wide range of strength and plasticity depending on the volume fraction of the reinforcement as well as on the extent of the interfacial reaction between Al matrix and QC reinforcing particles.
|
7 |
Production of high-strength Al-based alloys by consolidation of amorphous and partially amorphous powdersSurreddi, Kumar Babu 28 June 2011 (has links) (PDF)
In this thesis, novel bulk Al-based alloys with high content of Al have been produced by powder metallurgy methods from amorphous and partially amorphous materials. Different processing routes, i.e. mechanical alloying of elemental powder mixtures, controlled pulverization of melt-spun glassy ribbons and gas atomization, have been employed for the production of the Al-based powders. Among the different processing routes, gas atomization is the best choice for the production of Al-based amorphous and partially amorphous powders as precursors for the subsequent consolidation step because it allows the production of large quantities of powders with homogeneous properties (e.g. structure and thermal stability) along with a uniform size distribution of particles.
Amorphous and nanocrystalline powders have to be consolidated to achieve dense bulk specimens. However, consolidation of these phases is not an easy task and special care has to be taken with respect to accurate control of the consolidation parameters in order to achieve dense bulk specimens without inducing undesirable microstructural transformations (e.g. crystallization and grain coarsening) or insufficient particle bonding. Consequently, the effect of temperature on viscosity as well as on phase formation has been studied in detail in order to select the proper consolidation parameters.
Following their characterization, the Al-based powders have been consolidated into bulk specimens by hot pressing (HP), hot extrusion and spark plasma sintering (SPS) and their microstructure and mechanical properties have been extensively investigated. Consolidation into highly-dense bulk samples cannot be achieved without extended crystallization of the glassy precursors. Nevertheless, partial or full crystallization during consolidation leads to remarkable mechanical properties. For example, HP Al84Gd6Ni7Co3 samples display a remarkably high strength of about 1500 MPa, which is three times larger than the conventional high-strength Al-based alloys, along with a limited but distinct plastic deformability (3.5 – 4%). Lower strength (930 MPa) but remarkably larger plastic strain exceeding 25 % has been achieved for the Al87Ni8La5 gas-atomized powders consolidated by SPS above their crystallization temperature. Similarly, HP Al90.4Y4.4Ni4.3Co0.9 bulk samples display high compression strength ranging between 820 and 925 MPa combined with plastic strain in the range 14 – 30%. Finally, preliminary tensile tests for the Al90.4Y4.3Ni4.4Co0.9 alloy reveal promising tensile properties comparable to commercial high-strength Al-based alloys. The mechanical behavior of the consolidated specimens is strictly linked with their microstructure. High strength and reduced plasticity are observed when a residual amorphous phase is present. On the other hand, reduced strength but enhanced plastic deformation is a result of the complete crystallization of the glass and of the formation of a partially or fully interconnected network of deformable fcc Al.
These results indicate that the combined devitrification and consolidation of glassy precursors is a particularly suitable method for the production of Al-based materials characterized by high strength combined with considerable plastic strain. Through this method, the mechanical properties of the consolidated samples can be varied within a wide range of strength and ductility depending on the microstructure and the consolidation techniques used. This might open a new route for the development of innovative high-performance Al-based materials for transport applications.
|
8 |
Optimization and performance of grinding circuits: the case of Buzwagi Gold Mine (BGM)Wikedzi, Alphonce Wendelin 19 April 2018 (has links) (PDF)
Buzwagi Gold Mine (BGM) is operated by Acacia Mining and located in the Lake Victoria Goldfields of central Tanzania. The mine commenced its operation since April 2009 and treats a sulphide copper-gold ore to produce gold in form of doré bars and a concentrate containing gold, copper and silver. The BGM comminution circuit includes a primary crushing stage with a gyratory crusher and a two grinding circuits using a Semi-Autogenous Grinding (SAG) mill and a ball mill. The SAG mill circuit also includes a single-deck screen and a cone crusher while the ball mill circuit utilizes hydrocyclones.
Currently, the grinding circuits are inefficient in achieving the aspired product fineness of xP,80 = 125 μm even at low to normal throughputs (450-600 t/h). An evaluation and optimization study of the circuit performance was conducted to improve the product fineness through circuit surveys, experimental lab work and simulations. In three full scale sampling campaigns, size distributions and solids contents of the samples were determined at selected points in the circuit. Further, several types of breakage tests were conducted; standard Bond tests to determine ore grindability and work indices, batch grinding tests to determine parameters for breakage and selection functions , and standard ball mill tests for mineral liberation characterization by an automated mineral liberation analyzer (MLA).The tests were conducted in a size range from 0.063 to 2 mm.
Then, mass balance of the circuit was calculated and the models for mills, screens and hydrocyclones were employed in MODSIM (version 3.6.24). Firstly, simulations were conducted to optimize the existing plant. Several options were evaluated such as reduction of SAG screen aperture, adjustment of cyclone feed solids content and reduction of vortex finder and apex diameters. Moreover, simulations were also evaluated for a possible modification of the existing circuit and include; partial splitting of the cyclone underflow back to SAG mill, introduction of a second classification stage as well as introduction of a second ball mill.
The evaluation of breakage tests and survey data revealed the following; the Bond work index obtained for the current ore ranges between 17.20 - 18.70 kWh/t compared to 14.50 - 16.50 kWh/t which was estimated during plant design.This indicates a change in hardness of the ore during the last 7 years. Harder ore means more energy requirement for an efficient operation, the consequence of which is increased costs. Thus, a periodic review of the ore hardness for ongoing mining operation is recommended. This will help in establishing better blends as well as prediction of appropriate tonnages for the existing ore types, so as to be efficiently treated by the available plant design. The work indices of the ore blends treated during survey were correlated with their quartz content and showed a strong linear relationship (R2= 0.95). Therefore, the work index for the BGM ore could be predicted based on known quartz content of the material. Further, the model could be used as a control tool for monitoring hardness variation of the SAG mill feed. The mineral liberation studies indicated that the valuable phase (pyrite-pyrrhotite) could be liberated at relatively coarser particle sizes (200-400 µm). This implies that, there could be no problem with the efficiency of the gravity circuit for the BGM operation, where the gold contained in pyrite-pyrrhotite could be easily concentrated. However, the efficiency of flotation and cyanidation processes will still require finer feed. In overall, the liberation characteristics of the ore blends treated during survey showed minor differences.
The Bond efficiency factors of 48-61 % were obtained for the BGM grinding circuit, indicating an inefficient operation. This suggests that the operation could achieve targets by lowering the throughput. Further, the SAG mill circuit was characterized by fluctuating feed size of between xF,80 =102 to 185 mm. A need for control of the feed size as well as blending ratios was recommended for an efficient operation in terms of throughput and final product size. This could be achieved through closer monitoring of the primary crusher performance and proper control of the ratios for the SAG mill feeders drawing the ore from the stockpile.
The ball mill grinding efficiency was poor and could be indicated by the fraction < 125 µm of only 5-9 % or xP, 80 : >400 µm in the mill discharge. This was deemed due to poor hydrocyclone performance which was characterized by higher feed solids content, coarser overflow xP,80: >200 µm as well as cut sizes, xT : > 200 µm.
An improvement of product fineness up to 327 µm could be achieved during the simulation and optimization of the existing design. This could be achieved by modification of the operating conditions such as reduction of SAG screen aperture from 12 mm to 10 mm, reduction of vortex finder from 280 mm to 270.3 mm, reduction of apex diameter from 150 mm to 145.6 mm as well as adjustment of the cyclone feed solids content from 66.7 to 67.1 %. Based on this result, it was concluded that the current equipment could not achieve the target product quality (i.e. xP,80 = 125 µm ).
Further simulations based on flowsheet modification options showed that a second ball mill (series configuration) can help to achieve the desired product fineness as well as an increase of throughput from 618 t/h to 780 t/h. Although the circulating load increases to approximately 500 % in this configuration, it is outweighed by the benefits. Importantly, this option is cost intensive and hence may be considered as a long term solution and especially after cost-benefit analysis.
Finally, the results based on optimization of the existing design is recommended as short term solution for improvement of the BGM operation. Although the fineness achieved is still low (i.e. xP,80 = 327 µm) compared to the target (i.e. xP,80 = 125 µm), this gives additional advantage in the sense that, also better hydrocyclone performance is achieved in terms of overflow product (xP,80 = 105 µm vs. > 240 µm) , cut size (xT =133.1 µm vs. > 220 µm) and circulating load (CL =350 %). The improved overflow fineness will contribute to improved efficiency for the downstream processes.
|
9 |
Optimization and performance of grinding circuits: the case of Buzwagi Gold Mine (BGM)Wikedzi, Alphonce Wendelin 03 April 2018 (has links)
Buzwagi Gold Mine (BGM) is operated by Acacia Mining and located in the Lake Victoria Goldfields of central Tanzania. The mine commenced its operation since April 2009 and treats a sulphide copper-gold ore to produce gold in form of doré bars and a concentrate containing gold, copper and silver. The BGM comminution circuit includes a primary crushing stage with a gyratory crusher and a two grinding circuits using a Semi-Autogenous Grinding (SAG) mill and a ball mill. The SAG mill circuit also includes a single-deck screen and a cone crusher while the ball mill circuit utilizes hydrocyclones.
Currently, the grinding circuits are inefficient in achieving the aspired product fineness of xP,80 = 125 μm even at low to normal throughputs (450-600 t/h). An evaluation and optimization study of the circuit performance was conducted to improve the product fineness through circuit surveys, experimental lab work and simulations. In three full scale sampling campaigns, size distributions and solids contents of the samples were determined at selected points in the circuit. Further, several types of breakage tests were conducted; standard Bond tests to determine ore grindability and work indices, batch grinding tests to determine parameters for breakage and selection functions , and standard ball mill tests for mineral liberation characterization by an automated mineral liberation analyzer (MLA).The tests were conducted in a size range from 0.063 to 2 mm.
Then, mass balance of the circuit was calculated and the models for mills, screens and hydrocyclones were employed in MODSIM (version 3.6.24). Firstly, simulations were conducted to optimize the existing plant. Several options were evaluated such as reduction of SAG screen aperture, adjustment of cyclone feed solids content and reduction of vortex finder and apex diameters. Moreover, simulations were also evaluated for a possible modification of the existing circuit and include; partial splitting of the cyclone underflow back to SAG mill, introduction of a second classification stage as well as introduction of a second ball mill.
The evaluation of breakage tests and survey data revealed the following; the Bond work index obtained for the current ore ranges between 17.20 - 18.70 kWh/t compared to 14.50 - 16.50 kWh/t which was estimated during plant design.This indicates a change in hardness of the ore during the last 7 years. Harder ore means more energy requirement for an efficient operation, the consequence of which is increased costs. Thus, a periodic review of the ore hardness for ongoing mining operation is recommended. This will help in establishing better blends as well as prediction of appropriate tonnages for the existing ore types, so as to be efficiently treated by the available plant design. The work indices of the ore blends treated during survey were correlated with their quartz content and showed a strong linear relationship (R2= 0.95). Therefore, the work index for the BGM ore could be predicted based on known quartz content of the material. Further, the model could be used as a control tool for monitoring hardness variation of the SAG mill feed. The mineral liberation studies indicated that the valuable phase (pyrite-pyrrhotite) could be liberated at relatively coarser particle sizes (200-400 µm). This implies that, there could be no problem with the efficiency of the gravity circuit for the BGM operation, where the gold contained in pyrite-pyrrhotite could be easily concentrated. However, the efficiency of flotation and cyanidation processes will still require finer feed. In overall, the liberation characteristics of the ore blends treated during survey showed minor differences.
The Bond efficiency factors of 48-61 % were obtained for the BGM grinding circuit, indicating an inefficient operation. This suggests that the operation could achieve targets by lowering the throughput. Further, the SAG mill circuit was characterized by fluctuating feed size of between xF,80 =102 to 185 mm. A need for control of the feed size as well as blending ratios was recommended for an efficient operation in terms of throughput and final product size. This could be achieved through closer monitoring of the primary crusher performance and proper control of the ratios for the SAG mill feeders drawing the ore from the stockpile.
The ball mill grinding efficiency was poor and could be indicated by the fraction < 125 µm of only 5-9 % or xP, 80 : >400 µm in the mill discharge. This was deemed due to poor hydrocyclone performance which was characterized by higher feed solids content, coarser overflow xP,80: >200 µm as well as cut sizes, xT : > 200 µm.
An improvement of product fineness up to 327 µm could be achieved during the simulation and optimization of the existing design. This could be achieved by modification of the operating conditions such as reduction of SAG screen aperture from 12 mm to 10 mm, reduction of vortex finder from 280 mm to 270.3 mm, reduction of apex diameter from 150 mm to 145.6 mm as well as adjustment of the cyclone feed solids content from 66.7 to 67.1 %. Based on this result, it was concluded that the current equipment could not achieve the target product quality (i.e. xP,80 = 125 µm ).
Further simulations based on flowsheet modification options showed that a second ball mill (series configuration) can help to achieve the desired product fineness as well as an increase of throughput from 618 t/h to 780 t/h. Although the circulating load increases to approximately 500 % in this configuration, it is outweighed by the benefits. Importantly, this option is cost intensive and hence may be considered as a long term solution and especially after cost-benefit analysis.
Finally, the results based on optimization of the existing design is recommended as short term solution for improvement of the BGM operation. Although the fineness achieved is still low (i.e. xP,80 = 327 µm) compared to the target (i.e. xP,80 = 125 µm), this gives additional advantage in the sense that, also better hydrocyclone performance is achieved in terms of overflow product (xP,80 = 105 µm vs. > 240 µm) , cut size (xT =133.1 µm vs. > 220 µm) and circulating load (CL =350 %). The improved overflow fineness will contribute to improved efficiency for the downstream processes.
|
10 |
Deutsch-Polnischer-Workshop: Analyse der Aufbereitungsbedingungen und der Eigenschaftscharakteristik von Kompositwerkstoffen der Typen Kunststoffe und TSE-GummimehlMennig, Günter, Michael, Hannes 15 November 2006 (has links)
Bei der Wiederverwertung von Alt- und Abfallgummi
stehen Industrie und Forschung im Gegensatz zu den
rein thermoplastischen Kunststoffen wie Polypropylen
und Polyäthylen immer noch am Anfang. Große Mengen
der roh- und werkstofflich wertvollen (Technischen
und Sonstigen Elastomerartikel, sogen. TSE-Gummiab-
fälle (ca. 400 T Jahrestonnen) werden gegenwärtig
noch in Zementöfen und E-Werken verbrannt (thermisch
entsorgt).
Die werkstoffliche Aufbereitung, d.h. das Mahlen
zu Gummigranulat bzw. -mehl ermöglicht es, inbesondere
verstärkungsmittelfreies Gummimehl sehr kleiner
Partikelgrößen (<0,4 mm) in einem speziellen reaktiven
Mischverfahren mit Kunststoffen zu Kompositwerkstoffen
(Blends und Elastomerlegierungen) zu verarbeiten.
In den Elastomerlegierungen ist das Gummimehl chemisch
und physikalisch mit der Kunststoffmarix gekoppelt.
Deshalb kommen diese Kompositwerkstoffe in ihren
Eigenschaften den der TPE (Thermoplastische Elastomere)
sehr nahe.
Das Projekt untersucht Einflüsse verschiedener Mahl-
prozesse auf die Qualität des Gummimehls und versucht
das Mischverhältnis der Ausgangskomponenten und den
Mischprozeß zu optimieren. Als Qualitätskriterien
für diese experimentellen und theoretischen Arbeiten
gelten verschiedene mechanisch-physikalische Eigenschaften
von Formteilen, die nach unterschiedlichen Verarbeitungs-
methoden (Extrudieren, Formpressen, Spritzgießen)
aus den Kompositwerkstoffen hergestellt wurden.
Die Arbeitsgruppe um Dr. Michael von der TU Chemnitz
prüft die Eignung der Gummimehle, die nach dem noch
weitgehend unbekannten und von dem polnischen Projekt-
partner entwickelten Mahlverfahren, der sogen. SSSP-
Methode (Solid-State Shear Pulverisation) hergestellt
wurden, betreffs ihres Einsatzes als Hauptrezepturkomponente
in Elastomerlegierungen und speziellen Blends.
Im SSSP-Zerkleinerungsprozeß werden die Gummiwerkstoffe
höchsten Scherkräften ausgesetzt. Die dadurch ent-
stehenden inneren Spannungen führen zur Zerkleinerung
des Gummis in feinste Partikel (0,1 …0,3mm) jedoch mit
sehr großen Oberflächen.
Sowohl die TU Chemnitz als auch die ATL Bydgoszcz
sind in der TPE-Forschung, ein Markt mit wachsender
Nachfrage, seit Jahren sehr erfolgreich. Ziel des
Projektes ist es, zusammen mit dem Fraunhofer Institut
UMSICHT Oberhausen, der Greiner RUBBERTEC GmbH Nürtingen
und weiteren Firmen der Gummiindustrie Kompetenzen
zusammenzuführen und somit neue Erkenntnisse auf dem
Gebiet des Kunststoff- und Gummirecyclings zu gewinnen,
die kurzfristig in die Praxis umgesetzt werden können.
Das Projekt wird als Auftakt gemeinsamer Forschungs-
kooperationen verstanden und wird im Rahmen einer
gemeinsamen Ausschreibung des Auswärtigen Amtes und
des BMBF zum Deutsch-Polnischen Jahr 2005/2006 mit
Mitteln des BMBF gefördert.
|
Page generated in 0.0395 seconds