Return to search

SiC-Based High-Frequency Soft-Switching Three-Phase Rectifiers/Inverters

Three-phase rectifiers/inverters are widely used in grid-tied applications. Take the electric vehicle (EV) charging systems as an example. Within a certain space designated for the chargers, quick charging yet high efficiency are demanded. According to the current industry practice, with a power rating between 10 and 30 kW, the power density are limited by silicon (Si) power semiconductor devices, which make the systems operate at only up to around 30 kHz.
The emerging wide bandgap (WBG) power semiconductor devices are considered as game changing devices to exceed the limits brought by their Si counterparts. Much higher switching frequency, higher power density and higher system efficiency are expected to be achieved with WBG power semiconductor devices. Among different types of WBG power semiconductor devices, Silicon Carbide Metal-Oxide-Semiconductor Field-Effect Transistors (SiC MOSFETs) are more popular in current research conducted for tens of kW power converter applications. However, the commonly adopted hard switching operation in this application still leads to significant switching loss at high frequency operation even for SiC-based systems.
With the unique feature that the turn-off energy is almost negligible compared with the turn-on energy, critical conduction mode (CRM) based zero voltage soft switching turn-on operation is preferred for the SiC MOSFETs to eliminate the turn-on loss with small penalty on the conduction loss and on the turn-off loss. With this soft switching operation, switching frequency of SiC-based systems is able to be pushed to more than ten times higher than Si-based systems, and therefore higher power density yet even higher system efficiency can be achieved.
The CRM-based soft switching is applied to three-phase rectifiers/inverters under the unity power factor operating condition first. Decoupled CRM-based control is enabled, and the inherent drawback of wide switching frequency variation range at CRM-based operation is overcome by the proposed novel modulation technique. It is the first time that CRM-based soft switching modulation is demonstrated in the most conventional three-phase H-bridge ac–dc converter, and more than three-time size reduction compared with current industry practice yet 99.0% peak efficiency are achieved at above 300 kHz switching frequency operation.
Then this proposed soft switching modulation technique is extended to non-unity power factor operating conditions especially for grid-tied inverter system applications. With several improvements on the modulation, a generalized CRM-based soft switching modulation technique is proposed, which is applicable to both the unity and non-unity power factor conditions. With the power factor down to 0.8 lagging or leading according to commercial products, above 98.0% peak efficiency is achieved with the generalized soft switching modulation technique at above 300 kHz switching frequency operation.
Furthermore from the aspect of electromagnetic interference (EMI), compared with the traditional Si-based design, CRM operation brings higher differential-mode (DM) EMI noise, and higher dv/dt with SiC MOSFETs brings higher common-mode (CM) EMI noise. What's more, hundreds of kHz switching frequency operation makes the main components of the system EMI spectrum located within the frequency range related to the EMI standard (150 kHz – 30 MHz). Therefore, several methods are adopted for the reduction of EMI noise. The total inductor current ripple is reduced with multi-channel interleaving control in order to reduce DM EMI noise. The balance technique is applied in order to reduce CM EMI noise. With PCB winding coupled inductors, the well-controlled parasitic parameters make the balance technique able to be effective for a uniform reduction of CM EMI noise from 150 kHz to above 20 MHz. In addition, PCB winding based magnetic designs are beneficial to achieving manufacture automation and reducing the labor cost. / Doctor of Philosophy / Power electronics and power conversion are crucial to many applications related to electricity, such as consumer electronics, domestic and commercial appliances, automobiles, data centers, utilities and infrastructure. In today's market, quality and reliability are usually considered as a given; high efficiency (low loss), high power density (small size and weight) and low cost are the main focuses in the design of power electronics products.
In the past several decades, significant achievements in power electronics have been witnessed thanks to the silicon (Si) semiconductor technology, especially the Si power semiconductor devices. Nowadays, the development of Si power semiconductor devices is already close to the theoretical limits of the material itself. Therefore, in order to meet the increasing demands from customers in different applications, wide bandgap (WBG) based power semiconductor devices, namely Gallium Nitride (GaN) and Silicon Carbide (SiC), are becoming attractive because of its great potential compared with their Si counterparts.
In literature, great contributions have already been made to understanding the WBG based power semiconductor devices. It is exciting and encouraging that some of the GaN-based power electronics products featuring high efficiency, high power density and low cost have been commercialized in consumer electronics applications. However, when pursuing these objectives, previous literature has not shown any applications of high frequency soft switching technology into the high power ac–dc conversion (usually three-phase ac–dc) in a simple way as the low power ac–dc conversion (usually single-phase ac–dc) in consumer electronics products.
The key to achieving high efficiency, high power density and low cost is the high frequency soft switching operation. For single-phase ac–dc systems, the research on the realization of soft switching by control strategies instead of additional physical complexity has been intensively conducted, and this technology has also been adopted in the current industry practice. Therefore, the major achievement of this work is the development of a generalized soft switching control strategy for three-phase ac–dc systems, without adding any physical complexity, which is applicable to the simplest and most conventional three-phase ac-dc circuit topology. The proposed soft switching control strategy features bidirectional (rectifiers/inverters) power conversion, active/reactive power transfer, grid-tied/stand-alone modes, and scalability to multi-channel interleaved operation. Furthermore, with high frequency, the integration of magnetic components with embedded windings in the printed circuit board (PCB) becomes feasible, which is also beneficial to achieving electromagnetic compatibility (EMC) and manufacture automation. Based on the proposed control strategy and design methodology, a SiC-based 25-kW three-phase high frequency soft switching rectifier/inverter is developed for various applications such as electric vehicle (EV) charging stations, uninterruptible power supplies (UPS) and renewable energy based utilities.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/109756
Date03 November 2020
CreatorsHuang, Zhengrong
ContributorsElectrical Engineering, Li, Qiang, Centeno, Virgilio A., Dong, Dong, Lee, Fred C., Wicks, Alfred L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds