Return to search

Analysis of BFSA Based Anti-Collision Protocol in LF, HF, and UHF RFID Environments

Over the years, RFID (radio frequency identification) technology has gained popularity in a number of applications. The decreased cost of hardware components along with the recognition and implementation of international RFID standards have led to the rise of this technology.
One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. Low frequency (LF) RFID tags are widely used because they are the least expensive. The drawbacks of LF RFID tags include low data rate and low range. Most studies that have been carried out focus on one frequency band only. This thesis presents an analysis of RFID tags across low frequency (LF), high frequency (HF), and ultra-high frequency (UHF) environments.
Analysis was carried out using a simulation model created using OPNET Modeler 17. The simulation model is based on the Basic Frame Slotted ALOHA (BFSA) protocol for non-unique tags.
As this is a theoretical study, environmental disturbances have been assumed to be null. The total census delay and the network throughput have been measure for tags ranging from 0 to 1500 for each environment. A statistical analysis has been conducted in order to compare the results obtained for the three different sets.

Identiferoai:union.ndltd.org:unf.edu/oai:digitalcommons.unf.edu:etd-1556
Date01 January 2014
CreatorsBhogal, Varun
PublisherUNF Digital Commons
Source SetsUniversity of North Florida
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUNF Theses and Dissertations

Page generated in 0.0018 seconds