Return to search

Prediction of securities' behavior using a multi-level artificial neural network with extra inputs between layers / Förutsägelse av värdepapperens beteende med hjälp av ett artificiellt neuralt nätverk med flera nivåer med extra ingångar mellan skikten

This paper discusses the possibilities of predicting changes in stock pricing at a high frequency applying a multi-level neural network without the use of recurrent neurons or any other time series analysis, as suggested in a paper byChen et al. [2017]. The paper tries to adapt the model presented in a paper by Chen et al. [2017] by making the network deeper, feeding it data of higher resolution and changing the activation functions. While the resulting accuracy is not as high as other models, this paper might prove useful for those interested in further developing neural networks using data with high resolution and to the fintech business as a whole.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-210929
Date January 2017
CreatorsTörnqvist, Eric, Guan, Xing
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds