Neste trabalho, classificamos localmente as hipersuperfcies dos espaços produto S n × R e H n × R, n 6 = 3, com g curvaturas principais constantes e distintas, g {1, 2, 3}. Verifi- camos que tais hipersuperfcies são isoparamétricas de Q nc × R. Além disso, encontramos uma condição necessária e suficiente para que uma hipersuperfcie isoparamétrica de Q nc × R que possui fibrado normal plano, quando observada como uma subvariedade de codimensão dois de R n+2 contendo S n × R e de L n+2 contendo H n × R, tenha curvaturas principais constantes. / In this work, we classify locally the hypersurfaces in product spaces S n × R and H n × R, n 6 = 3, with g distinct constant principal curvatures, g {1, 2, 3}. We verify that such hy- persurfaces are isoparametric in Q nc × R. Furthermore, we find a necessary and sufficient condition for an isoparametric hypersurface in Q nc × R with flat normal bundle, when re- garded as a submanifold with codimension two of the flat spaces R n+2 containing S n × R and L n+2 containing H n × R, having constant principal curvatures.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24092019-171906 |
Date | 29 November 2013 |
Creators | Santos, Eliane da Silva dos |
Contributors | Chaves, Rosa Maria dos Santos Barreiro |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds