Return to search

Consequences of synaptic plasticity at inhibitory synapses in mouse hippocampal area CA2 under normal and pathological conditions / Conséquences de la plasticité synaptique aux synapses inhibitrices de la région CA2 de l'hippocampe de souris, dans des conditions normales et pathologiques

L'hippocampe est une région du cerveau importante pour la formation de mémoire. Des études récentes ont montré que la zone CA2 de l'hippocampe, longtemps ignorée, joue un rôle clef dans certaines formes de mémoire et notamment dans la mémoire sociale. De plus, des études post-mortem ont révélé des altérations spécifiques à la région CA2 chez les patients schizophrènes. Cependant, l’implication des neurones de CA2 dans les circuits de l'hippocampe reste peu connu, tant dans des conditions physiologiques que pathologiques. En combinant pharmacologie, génétique et électrophysiologie sur tranches d’hippocampe de souris, nous avons étudié comment les neurones pyramidaux (NP) CA2 sont recrutés dans les circuits hippocampiques après des changements d’inhibition et comment le recrutement des NP CA2 pourrait moduler l’information sortant de l'hippocampe. D’autre part, nous avons examiné les altérations fonctionnelles de la zone CA2 dans le modèle murin Df(16)A+/- de la microdélétion 22q11.2, le facteur génétique de risque de schizophrénie le plus élevé. Dans la région CA2 de l’hippocampe, les synapses inhibitrices contrôle les afférences des collatérales de Schaeffer (CS) et expriment une dépression à long-terme (DLTi) unique qui dépendant des récepteurs delta-opioïdes (RDO). Contrairement aux synapses CS-CA1, les synapses excitatrices CS-CA2 n’expriment pas de potentialisation à long-terme après application des protocoles d'induction. Cependant, nous avons constaté que différents types d'activités induisent une augmentation durable de l’amplitude des potentiels post-synaptiques (PPS) évoqués aussi bien par une stimulation des CS que des afférences distales des NP CA2, et ceci via une modulation de la balance excitation/inhibition. Nous avons démontré que ces augmentations du rapport excitation/inhibition sont les conséquences directes de la DLTi RDO-dépendante. De plus, la DLTi permet le recrutement des NP CA2 par les NP CA3 alors qu’une inhibition intacte empêche complètement leur activation en réponse aux stimulations des CS. Par ailleurs, le recrutement des pyramides de CA2 par les CS après disinhibition activité-dépendante ajoute une composante polysynaptique (SC-CA2-CA1) au PPS monosynaptique (SC-CA1) dans les NP CA1 et augmente leur activité. De plus, l’inactivation des interneurones exprimant la parvalbumine à l’aide d’outils pharmacogénétiques, a montré que ces cellules inhibitrices contrôlent fortement l'amplitude du PPS et l’activité des NP CA2 en réponse à la stimulation des CS et qu’elles sont nécessaires à l'augmentation RDO-dépendante du rapport excitation/inhibition entre CA3 et CA2. Enfin, l'étude de la zone CA2 chez les souris Df(16)A+/- a révélé plusieurs modifications dépendantes de l'âge dont une réduction de l'inhibition, une altération de la plasticité du rapport excitation/inhibition entre CA3 et CA2 et une hyperpolarisation NP CA2. Ces modifications cellulaires peuvent expliquer les déficiences de mémoire sociale que nous observons chez les souris Df(16)A+/- adultes. L’ensemble de nos études a permis de mettre en évidence le rôle des neurones CA2 dans les circuits de l'hippocampe. Enfin pour conclure, nous postulons que le recrutement des neurones CA2 dans les réseaux neuronaux sous-tend des aspects particuliers de la fonction de l'hippocampe. / The hippocampus is a region of critical importance for memory formation. Recent studies have shown that the long-overlooked hippocampal region CA2 plays a role in certain forms of memory, including social recognition. Furthermore, post-mortem studies of schizophrenic patients have revealed specific changes in area CA2. As yet, the role of CA2 neurons in the hippocampal circuitry remains poorly understood under both normal physiological and pathological conditions. By combining pharmacology, mouse genetics and electrophysiology, we investigated how CA2 pyramidal neurons (PNs) could be recruited in hippocampal circuits in mice hippocampal slices following an activity-dependent change in the strength of their inhibitory inputs. We further investigated how subsequent recruitment of CA2 PNs could modulate hippocampal output. Moreover, we examined the functional alterations of area CA2 in the Df(16)A+/- mouse model of the 22q11.2 microdeletion, a spontaneous chromosomal deletion that is the highest known genetic risk factor for developing schizophrenia. In area CA2, inhibitory synapses exert a powerful control of Schaffer collateral (SC) inputs and undergo a unique long-term depression (iLTD) mediated by delta-opioid receptor (DOR) activation. Unlike SC-CA1 synapses, SC-CA2 excitatory synapses fail to express long-term potentiation after classical induction protocols. However, we found that different patterns of activity persistently increase both the SC and the distal input net excitatory drive onto CA2 PNs via a modulation of the balance between excitation and inhibition. We demonstrated that increases in the excitatory/inhibitory ratio are direct consequences of the DOR-mediated iLTD. Interestingly, we found that the inhibition in area CA2 completely preventing CA3 PNs to activate CA2 PNs, and following iLTD, SC stimulation allows CA2 PNs to fire action potentials. Moreover, the recruitment of CA2 PNs by SC intra-hippocampal inputs after their activity-dependent disinhibition adds a delayed SC-CA2-CA1 response to the SC-CA1 monosynaptic post-synaptic potential (PSP) in CA1 and increases CA1 PN activity. Furthermore, pharmaco-genetic silencing of parvalbumin-expressing interneurons revealed that these inhibitory cells control the PSP amplitude and the firing of CA2 PNs in response to SC stimulation and are necessary for the DOR-mediated increase in excitatory/inhibitory balance between CA3 and CA2. Finally, we found several age-dependent alterations in area CA2 in Df(16)A+/- mouse model of the 22q11.2 microdeletion. These included a reduction in inhibition, an impaired activity-dependent modulation of the excitatory drive between CA3 and CA2 and a more hyperpolarized CA2 PN resting potential. These cellular disruptions may provide a potential mechanism for the social memory impairment that we observe in Df(16)A+/- adult mice. Altogether, our studies highlight the role of CA2 neurons in hippocampal circuitry. To conclude, we postulate that the recruitment of CA2 neurons in neuronal networks underlies key aspects of hippocampal function.

Identiferoai:union.ndltd.org:theses.fr/2015USPCB089
Date23 November 2015
CreatorsNasrallah, Kaoutsar
ContributorsSorbonne Paris Cité, Chevaleyre, Vivien
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds