Return to search

Effects of histone deacetylase and proteasome inhibitors on Epstein-barr virus-positive Burkitt lymphoma and lymphoblastoid cells

Burkitt lymphoma (BL) was the first tumor found to be strongly associated with Epstein-Barr virus (EBV). Almost 100% of the lymphoma cells are cycling, necessitating dose- and time-intense multi-agent chemotherapy regimens to achieve a cure of the disease. Whilst standard risk BL can be cured with this approach, high risk BL with leukaemic and CNS disease has significantly inferior survival. The intensive chemotherapy regimen causes considerable toxicity to the patients and relapse of BL is largely incurable. Thus, novel therapeutic approaches for high risk and relapsed BL are needed.

Histone deacetylase inhibitors (HDACis) represent a novel class of drugs with potent anti-cancer effect in a wide range of malignancies. In the first part of this study, we tested HDACis of different classes for their ability to inhibit cell proliferation and activate the lytic cycle of EBV in a panel of EBV-positive BL cells of different latent viral gene expression patterns (type I, Wp-restricted and type III latency with highly restrictive, partial and full spectrum of EBV latent gene expression, respectively). Different HDACis could inhibit proliferation of EBV-positive BL cells in a time- and dose-dependent manner but only weakly activate the viral lytic cycle indicating that the drugs’ cytotoxic effect is independent of the EBV lytic cycle. Of note, BL cells of Wp-restricted or type III latency were more resistant to killing by HDACis than those of latency I, suggesting a possible link between relative resistance to the drug and expression of the latent viral genes.

Bortezomib, a proteasome inhibitor, may have synergistic action with HDACis on lymphoid malignancies. We hypothesized that Bortezomib could potentiate the killing of EBV-positive BL cells by HDACis. In the second part, we tested the effect of combination of a FDA-approved HDACi, suberoylanilide hydroxamic acid (SAHA) and Bortezomib in the same panel of BL cells and also EBV-transformed lymphoblastoid cell lines (LCLs) which represent an in-vitro model of EBV-associated post-transplant lymphoproliferative disorder (PTLD). Interestingly, combination of SAHA and Bortezomib significantly enhanced the killing of BL cells of Wp-restricted or type III latency. Furthermore, the resistance to either SAHA or Bortezomib alone in contrast to synergistic killing by the combination of the two drugs could be observed in LCLs which also have the type III latency pattern. Compared with either drug alone, combination of SAHA and Bortezomib induced enhanced apoptosis in Wp-restricetd BL cells and LCLs as shown by the increase in the percentage of annexin V-positive cell, sub-G1 population and the proteolytic cleavage of apoptotic markers including PARP, caspase-3 and -9. The drug combination hyper-acetylated histone and induced cell cycle arrest. Combination of SAHA and Bortezomib was further shown to suppress the growth of BL xenograft in nude mice.

In conclusion, our data indicated that expression of partial or full spectrum of viral latent genes in EBV-positive BL cells of Wp-restricted or type III latency confers resistance of the tumor cells to cytotoxic effect of HDACis. Bortezomib could potentiate SAHA-induced apoptosis of both BL cells and LCLs and might overcome mechanism of drug resistance. / published_or_final_version / Paediatrics and Adolescent Medicine / Master / Master of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/207474
Date January 2013
CreatorsLeung, Yuen-ying, 梁婉瑩
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0024 seconds