Return to search

Modeling of two & three phases bubble column / Modélisation d’une colonne à bulles biphasique et triphasique

Abstract : The industrial partner of this project uses a slurry bubble reactor for the production of biogenic methanol. In the latter syngas is dispersed into the slurry continuous phase containing both liquid and solid phases. The rising bubbles containing a wide spectrum of the bubbles sizes, interact with the continuous phase due to the interface momentum transfer. The latter includes the drag, lift, wall lubrication and turbulent dispersion terms that require average bubble size, which needs to be calculated. One way to predict this average bubble size is by using population balance model (PBM), which can be coupled with the Eulerian framework. PBM also needs closure kernels for the bubble coalescence and bubble breakup.
In this study, the influence of bubble coalescence and bubble breakup kernels have been studied in two- and three-phase system using eulerian approach, which solves momentum equation for each phase. The influence of the mesh sizes, number of bubble classes, numerical schemes, wall lubrication force and turbulent dispersion force are also included. In the two-phase system, results show that the Luo coalescence model needs to be tuned when used in combination with the Luo breakup kernel. The combination of the Luo coalescence and the Lehr breakup kernels (Luo-Lehr) show promising time-averaged radial profiles of gas holdup and axial liquid velocity as compared to empirical values. In the three-phase system, the combination of the Luo coalescence and the Lehr breakup kernels (Luo-Lehr) and the Luo coalescence and the Luo breakup kernels (Luo-Luo) predict convincing time-averaged radial profile of axial solid velocity as compared to experiments. However, at an elevated superficial gas velocity, a non-realistic behavior was predicted when compared to empirical observations.
The sensitivity analysis results show that the 3 mm mesh size depicts a trend similar to the empirical values of the radial profiles of the gas holdup, axial liquid velocity, and solid axial velocity. The number of bubble classes influence the predicted bubble size distribution in the three-phase system while the numerical discretizing schemes have no influence on the results. The bench simulation results show that the inclusion of the turbulent dispersion term using a single porous tubular sparger influences the hydrodynamic behavior of the bubble column. / Le partenaire industriel de ce projet utilise un réacteur à suspension à trois phases pour la production de méthanol biogénique. Dans celui-ci, le gaz de synthèse est diffusé par barbotement dans la phase à suspension qui contient à la fois les phases liquide et solide. Les bulles en ascension présentent un large spectre de tailles et interagissent avec la phase à suspension en échangeant de la quantité de mouvement via leurs surfaces. Cet échange comprend les forces de trainé, de portance, de lubrification en proche parois et de dispersion par turbulence; lesquelles requièrent notamment le calcul de la taille moyenne des bulles. Une façon de prédire numériquement cette taille moyenne est de recourir à un modèle de bilan de population (PBM, de l’anglais Population Balance Model), qui peut être couplé avec un model multiphasique eulérien. Un tel PBM a requière des modèles de fermetures pour la coalescence et la rupture des bulles.
Dans la présente étude, l'influence des modèles noyaux de coalescence et de rupture des bulles a été étudiée pour des systèmes à deux et à trois phases en utilisant l’approche eulérienne. L'influence de la taille du maillage, du nombre de classes de bulles, du schéma numérique, de la force de lubrification en proche parois et de la force de dispersion par turbulence sont également incluses. Dans un système bi-phasique, les résultats montrent que le modèle de coalescence Luo doit être ajusté lorsqu'il est utilisé en combinaison avec le noyau de rupture Luo. La combinaison des noyaux de coalescence Luo et de rupture Lehr (Luo-Lehr) montrent des profils radiaux moyennés dans le temps qui sont valides pour la concentration de gaz et la vitesse axiale du liquide par rapport aux mesures expérimentales. Dans le système triphasé, la combinaison des modèles noyaux de coalescence de Luo et de rupture de Lehr (Luo-Lehr) et de la coalescence de Luo et de rupture de Luo (Luo-Luo) prédisent des profils radiaux moyennés dans le temps qui sont valides pour la vitesse axiale moyenné dans le temps par rapport aux expériences. Cependant, à une vitesse de gaz superficielle élevée, ces profils prédisent un comportement non réaliste par rapport aux observations empiriques.
Les résultats de l'analyse de sensibilité du maillage montrent qu’avec des cellules de 3 mm, le model prédit une tendance similaire aux valeurs empiriques pour les profils radiaux de concentration du gaz, de vitesse axiale du liquide et de vitesse axiale solide. Le nombre de classes de bulles influe sur les distributions prédites de taille de bulle dans le système triphasé alors que les schémas de discrétisation numériques n'ont aucune influence sur les résultats. Les résultats des simulations d’un banc d’essai avec diffuseur à bulles poreux montrent que tenir compte du terme de dispersion influence le comportement hydrodynamique de la colonne à bulles.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/11431
Date January 2017
CreatorsSyed, Alizeb Hussain
ContributorsLavoie, Jean-Michel
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench, English
Detected LanguageFrench
TypeThèse
Rights© Alizeb Hussain Syed

Page generated in 0.0023 seconds