Return to search

Mesure par microscopie holographique numérique des propriétés viscoélastiques des cellules entières

L’étude des propriétés viscoélastiques des cellules entières par microscopie optique permet de soutirer de l’information unique sur les caractéristiques des cellules. Il est d’autant plus pertinent d’analyser ces propriétés tout au long de la maturation des cellules en culture pour en extraire de l’information sur le développement ainsi que sur la santé de celles-ci. Cependant, la grande majorité des techniques d’imagerie nécessite l’ajout d’un agent de marquage, alors que les méthodes permettant de mesurer les propriétés viscoélastiques cellulaires sont d’autant plus invasives. L’emploi de la microscopie holographique numérique est proposé, car cette méthode permet d’imager en temps réel des cellules en culture sans technique de marquage et d’en tirer des données quantitatives. De plus, la microscopie holographique numérique permet d’observer à l’échelle nanoscopique des déformations induites sur ces cellules, sans contact physique entre les cellules et un instrument externe. Le but de ce projet est de développer des tests en écoulement cisaillé permettant d’obtenir les propriétés viscoélastiques des cellules entières de façon précise et non invasive. Les réponses en déformation des cellules, face à la contrainte induite par le fluide en mouvement, sont ensuite interprétées par des modèles viscoélastiques auxquels les propriétés, telles que les constantes de rigidité et de viscosité, sont extraites pour toute la culture simultanément. Les résultats ont montré que les tests en écoulement cisaillé permettent de mesurer les propriétés viscoélastiques des cellules entières de façon non invasive. Une différence significative a été observée entre les propriétés des cellules NIH 3T3, HEK 293T/17 et des neurones. La constante de rigidité E1, ainsi que la constante de viscosité h2 des modèles Standard et Burgers sont des propriétés viscoélastiques des cellules entières permettant la distinction de ces types cellulaires. / The study of viscoelastic properties of whole-cell by optical microscopy allows one to obtain unique information on cell features. It is all the more important to assess those properties all along cultured cell maturation to extract information on its development and health. However, a vast majority of imaging techniques require a marking agent, whilst methods to measure viscoelastic properties are equally invasive. The use of digital holographic microscopy is proposed, since this method allows to image cell culture in real-time without a marking technique and provides quantitative images. Moreover, digital holographic microscopy provides screening deformation at nanoscopic scale induced on cells, without physical contact between the cells and an external instrument. The goal of this project is to develop shear flow assays allowing precise and non-invasive measurements of whole-cell viscoelastic properties. Cell deformation responses caused by the fluid shear stress are interpreted by viscoelastic models where rigidity and viscosity constants are extracted for the whole cell culture simultaneously. Results have shown that shear flow assays allow non-invasive whole-cell measurements of viscoelastic properties. A significant difference between cell properties of NIH 3T3, HEK 293T/17 and neurons have been found. The rigidity constant E1 and the viscosity constant h2 from Standard and Burgers models are viscoelastic properties to be used to discriminate those cell type.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/37528
Date11 December 2019
CreatorsBilodeau, Philippe
ContributorsBélanger, Erik, Marquet, Pierre
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xiii, 99 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0017 seconds