Return to search

Design and Evaluation of Affective Serious Games for Emotion Regulation Training

Emotions are thought to be one of the key factors that critically influences human decision-making. Emotion regulation can help to mitigate emotion related decision biases and eventually lead to a better decision performance. Serious games emerged as a new angle introducing technological methods to learning emotion regulation, where meaningful biofeedback information communicates player's emotional state. Games are a series of interesting choices, where design of those choices could support an educational platform to learning emotion regulation. Such design could benefit digital serious games as those choices could be informed though player's physiology about emotional states in real time. This thesis explores design and evaluation methods for creating serious games where emotion regulation can be learned and practiced. Design of a digital serious game using physiological measures of emotions was investigated and evaluated. Furthermore, it investigates emotions and the effect of emotion regulation on decision performance in digital serious games. The scope of this thesis was limited to digital serious games for emotion regulation training using psychophysiological methods to communicate player's affective information. Using the psychophysiological methods in design and evaluation of digital serious games, emotions and their underlying neural mechanism have been explored. Effects of emotion regulation have been investigated where decision performance has been measured and analyzed. The proposed metrics for designing and evaluating such affective serious games have been extensively evaluated. The research methods used in this thesis were based on both quantitative and qualitative aspects, with true experiment and evaluation research, respectively. Digital serious games approach to emotion regulation was investigated, player's physiology of emotions informs design of interactions where regulation of those emotions could be practiced. The results suggested that two different emotion regulation strategies, suppression and cognitive reappraisal, are optimal for different decision tasks contexts. With careful design methods, valid serious games for training those different strategies could be produced. Moreover, using psychophysiological methods, underlying emotion neural mechanism could be mapped. This could inform a digital serious game about an optimal level of arousal for a certain task, as evidence suggests that arousal is equally or more important than valence for decision-making. The results suggest that it is possible to design and develop digital serious game applications that provide helpful learning environment where decision makers could practice emotion regulation and subsequently improve their decision-making. If we assume that physiological arousal is more important than physiological valence for learning purposes, results show that digital serious games designed in this thesis elicit high physiological arousal, suitable for use as an educational platform.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-10478
Date January 2015
CreatorsJerčić, Petar
PublisherBlekinge Tekniska Högskola, Institutionen för kreativa teknologier, Karlskrona
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationBlekinge Institute of Technology Doctoral Dissertation Series, 1653-2090 ; 10

Page generated in 0.0021 seconds