Return to search

MODELLING POLYGENERATION WITH DESICCANT COOLING SYSTEM FOR TROPICAL (AND SUB - TROPICAL) CLIMATES

Modelling Polygeneration with Desiccant Cooling System for Tropical(and Sub Tropical) ClimatesAbstractSpace cooling has become a necessity in tropical countries. Maintainingcomfortable indoor conditions in industrial environments incur high energy bills due toheavy dependency on electrically operated air conditioning systems. In order to exploreways and means to improve the energy efficiency and alternative energy resources, afeasibility study was conducted using a transient simulation software TRNSYS toimplement a combined cooling, heating and power system suitable for a tropicalcountry.It is proven from the literature search that desiccant dehumidification inconjunction with evaporative coolers can reduce air conditioning operating costssignificantly since the energy required to power a desiccant cooling system is small andthe source of this required energy can be diverse.(Low exergy heat such as solar, wasteheat and natural gas)This research is conducted to evaluate the performance and applicability ofdesiccant cooling systems under tropical climatic conditions. Two operating modes;ventilation and recirculation modes of solid desiccants based open cycle air conditioningthat use waste heat from a CHP plant are analysed to understand their operatingranges, performances and applicability. The model developed is used to propose asuitable desiccant cooling system for a selected industry environment in Sri Lanka.Preliminary results obtained by a parametric analysis for weather data for Colombo, SriLanka shows 0.95 and 1.02 optimum coefficients of performance for the ventilation andrecirculation modes respectively when heat is available at 85°C. Based on thecomparisons of the analysis it is seen that the desiccant cooling appears to be a logicalsupplement for space cooling applications in tropical climates like Sri Lanka. And for thecase study taken to investigate can be proposed with a desiccant cooling system with ahot water storage as the energy supply and it can maintain a COP of about 0.48 undertropical weather conditions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-43253
Date January 2011
CreatorsBakmeedeniya, Lekha Udayanganie
PublisherKTH, Energiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds