Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 % oxygen) and hypoxic (2 % oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue. / Gelenkknorpeldefekte, die durch Sportverletzungen, Unfälle oder graduelle Abnutzung ent-stehen, können zu Degeneration des Gewebes und zur Entstehung von Arthrose führen, da Knorpelgewebe nur über eine eingeschränkte Fähigkeit zur Selbstheilung verfügt. Arthrose reduziert die Beweglichkeit und verursacht chronische Schmerzen. Sie ist vor allem bei älte-ren Menschen einer der häufigsten Gründe für körperliche Behinderung. Die zurzeit verfüg-baren operativen Behandlungsmöglichkeiten können die Symptome meist für einige Zeit lindern, aber das dabei gebildete Ersatzgewebe zeigt meistens nur eingeschränkte Funktiona-lität im Vergleich zu natürlichem gesunden Knorpelgewebe und bleibt nur für eine begrenzte Zeit stabil. Tissue Engineering von Gelenkknorpelgewebe ist ein vielversprechender Ansatz, um die Qualität des Ersatzgewebes und der Knorpelregeneration zu verbessern.
Diese Arbeit untersuchte einen neuen vielversprechenden Zelltyp für das Tissue Engineering von Knorpelgewebe, sogenannte Gelenkknorpel-Vorläuferzellen (ACPCs). Diese Zellen wurden erstmals in zwei verschiedenen Hydrogelen, Agarose und HA-SH/P(AGE-co-G), mit mesenchymalen Stromazellen (MSCs) verglichen. Die chondrogene Kapazität von ACPCs und MSCs in Agarose wurde unter normoxischen (21 % Sauerstoff) und hypoxischen (2 % Sauerstoff) Bedingungen in Monokultur und zonal geschichteter Kokultur untersucht. In den zonalen Kokulturen befanden sich ACPCs in einer oberen Schicht und MSCs in einer unte-ren Schicht. In dem neu entwickelten Hyaluronsäure (HA)-basierten Hydrogel HA-SH/P(AGE-co-G) wurde die chondrogene Differenzierung von ACPCs und MSCs ebenfalls in Monokultur und in zonal geschichteter Kokultur, wie im Agarose-Hydrogel, analysiert. Außerdem wurde der Beitrag des biologisch aktiven Moleküls Hyaluronsäure zur chondro-genen Genexpression von MSCs in 2D-, 3D-Pellet- und HA-SH-Hydrogel-Kulturen unter-sucht.
Diese Arbeit zeigte, dass sowohl ACPCs als auch MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen chondrogen differenzieren konnten. ACPCs produzierten im Agarose-Hydrogel ein Gewebe, das dem Gelenkknorpel ähnlicher war als das von MSCs produzierte Gewebe, da es mehr Glykosaminoglykane (GAG), weniger Typ I Kollagen und nur geringe Aktivität der Alkalinen Phosphatase (ALP) aufwies. Hypoxische Bedingungen konnten die Produktion von extrazellulärer Matrix (ECM) durch ACPCs und MSCs nicht erhöhen, aber sie verbesserten die Qualität des von MSCs produzierten Gewebes. Die Herstellung von zon-alen Agarose-Konstrukten mit ACPCs in der oberen Schicht und MSCs in der unteren Schicht führte zu einer ECM-Produktion in zonalen Hydrogelen, die im Allgemeinen zwi-schen der ECM-Produktion der ACPC-Monokultur und der MSC-Monokultur lag. Zonale Kokultur von ACPCs und MSCs führte zwar nicht zu einer erhöhten ECM-Produktion, al-lerdings beeinflussten die beiden Zelltypen sich gegenseitig und modulierten zum Beispiel die Intensitäten der Typ II und Typ I Kollagen Färbungen im Vergleich zu Monokulturen unter normoxischen und hypoxischen Bedingungen. Im HA-SH/P(AGE-co-G)-Hydrogel produzierten die MSCs mehr ECM als die ACPCs, allerdings war die Verteilung der gebilde-ten ECM bei beiden Zelltypen auf den perizellulären Bereich beschränkt. Zonale HA-SH/P(AGE-co-G)-Hydrogele führten zu einer zonalen Verteilung von ECM, die der natürli-chen Struktur von Gelenkknorpel ähnlich war, da die MSCs in der unteren Schicht mehr ECM produzierten als die ACPCs in der oberen Schicht. Anscheinend wurde die chondroge-ne Differenzierung von ACPCs von Hydrogelen unterstützt, die, so wie Agarose, keine bio-logischen Bindestellen aufwiesen, und die Chondrogenese von MSCs profitierte von Hydro-gelen mit biologischen Signalen wie HA.
Da HA ein attraktives Material für Tissue Engineering von Knorpel darstellt und das HA-basierte Hydrogel HA-SH/P(AGE-co-G) anscheinend die chondrogene Differenzierung von MSCs begünstigte, wurde der Beitrag von HA zur chondrogenen Genexpression in MSCs untersucht. Eine Hochregulation der chondrogenen Genexpression ließ sich in 2D- und 3D-Pellet-Kulturen von MSCs als Reaktion auf HA beobachten, während die Genexpression von osteogenen oder adipogenen Transkriptionsfaktoren nicht hochreguliert wurde. Der Ein-schluss von MSCs in einem HA-basierten Hydrogel führte zu einer Erhöhung der Genex-pression von chondrogenen, osteogenen, adipogenen und Stemness-Markern. Ein 3D-Druck-Prozess mit dem HA-basierten Hydrogel veränderte die Genexpression von MSCs in den meisten Fällen nicht. Dennoch wurde die Expression von drei getesteten Genen (COL2A1, SOX2, CD168) in gedruckten im Vergleich zu gegossenen Konstrukten herunterreguliert. Dies unterstrich die Wichtigkeit einer genauen Kontrolle des Verhaltens der Zellen während und nach dem Druck-Prozess.
Zusammenfassend ließen sich ACPCs als vielversprechender neuer Zelltyp für das Tissue Engineering von Gelenkknorpelgewebe bestätigen. ACPCs haben Vorteile gegenüber MSCs, vor allem, wenn sie in einem passenden Hydrogel wie Agarose kultiviert werden. Die Leis-tung der Zellen war stark von den verschiedenen Hydrogelen und der Umgebung beeinflusst, die diese den Zellen darboten. Die unterschiedliche chondrogene Leistung von ACPCs und MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen zeigte deutlich die übergeordnete Relevanz der Auswahl von passenden Hydrogelen für die verschiedenen Zelltypen, die im Tissue Engineering von Gelenkknorpel Verwendung finden. Hydrogele mit einem hohen Polymergehalt, wie das eingesetzte HA-SH/P(AGE-co-G)-Hydrogel, können die Verteilung der gebildeten ECM auf den perizellulären Bereich beschränken und sollten weiterentwickelt werden, um einen niedrigeren Polymergehalt und damit eine homogenere ECM-Verteilung durch die kultivierten Zellen zu erreichen. Der Einfluss von HA auf die chondrogene Gen-expression und auf die Balance zwischen Differenzierung und Erhaltung der Stemness in MSCs ließ sich aufzeigen. In Zukunft sollten weitere Studien die Signalfunktionen von HA und den Einfluss des 3D-Drucks in HA-basierten Hydrogelen genauer zu untersuchen.
Zusammengenommen erweitern die Ergebnisse dieser Arbeit das Wissen im Bereich des Tissue Engineerings von Gelenkknorpelgewebe, vor allem in Bezug auf eine rationale Kom-bination von Zelltypen und Hydrogel-Materialien, und eröffnen neue Ansätze zur Knorpel-regeneration.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:25171 |
Date | January 2021 |
Creators | Schmidt, Stefanie |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0036 seconds