Hyaluronan (HA), a structural component in the extracellular matrix (ECM), has been recognized as a signaling molecule. It is important during various biological activities such as embryogenesis, angiogenesis, wound healing and tumor progression. Increased amount of hyaluronan during embryonic development is necessary for cell migration and differentiation, but the increased production of hyaluronan by tumor cells or tissue fibroblasts is correlated to poor prognosis for tumor progression and chronic inflammation, respectively. Therefore, understanding the mechanisms regulating HA-enriched matrices and the roles of HA in the biological functions is of fundamental biological importance. Four novel findings are described in this thesis: (1) HA fragments (HA12) and the known angiogenic factor FGF-2 promote endothelial cell differentiation by induction of common but also distinct sets of genes, particularly, upregulation of the chemokine CXCL1/GRO1 gene is necessary for HA12-induced angiogenesis and this effect is dependent on CD44 activation. (2) High concentrations of hyaluronan suppress PDGF-BB-induced fibroblasts migration and PDGFRβ tyrosine phosphorylation upon activation of hyaluronan receptor CD44, probably by recruiting a CD44-associated phosphatase to the PDGFRβ. (3) PDGF-BB stimulates HAS2 transcriptional activity and HA synthesis through upregulation of MAP kinase and PI3 kinase signaling pathways in human dermal fibroblasts. (4) Specific suppression of HAS2 gene in the invasive breast cancer cell line Hs578T by RNA interference (RNAi) leads to a less aggressive phenotype of breast tumor cells. This suppressive effect can be reversed by exogenously added hyaluronan. In conclusion, binding of hyaluronan to CD44 plays an important role in cell signaling, inflammation and tumor progression. Further studies are required to elucidate the molecular mechanisms through which hyaluronan levels are regulated under physiological or pathological conditions, and to explore compounds involved in hyaluronan accumulation and activity as targets for therapies of chronic inflammation and tumors.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-6802 |
Date | January 2006 |
Creators | Li, Lingli |
Publisher | Uppsala universitet, Ludwiginstitutet för cancerforskning, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 142 |
Page generated in 0.0018 seconds