• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 19
  • 18
  • 15
  • 10
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 183
  • 183
  • 38
  • 32
  • 30
  • 25
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Phosphoinositide 3-Kinase in the Regulation of Cardiac Morphology and Function

Guo, Danny Unknown Date
No description available.
2

The role of Phosphoinositide 3-Kinase in the Regulation of Cardiac Morphology and Function

Guo, Danny 06 1900 (has links)
The traditional PI3K pathway relies on agonist mediated stimulation of PI3Kα through RTKs and PI3Kγ through GPCRs, which stimulate downstream enzymes such as Akt. This pathway has been found to be important in cardiomyocytes and cardiofibroblasts for regulating cardiac morphology and function. However, evidence has suggested that this traditional pathway does not fully represent the PI3K signaling cascade. We demonstrated that PI3Kγ regulates calcium through kinase independent interactions. PI3KγKO hearts rapidly develop systolic dysfunction and dilated cardiomyopathy in response to pressure overload due to excess matrix metalloproteinase mediated degradation of N-cadherin adhesion complexes. We also show a connection between the PI3K/PTEN and Casein Kinase 2, an enzyme that deactivates PTEN. Finally, our results demonstrate crosstalk between GPCRs and PI3Kα via transactivation of growth factor receptors. Our results provide insight into the regulation and the complexity of the PI3K/PTEN pathway. / Experimental Medicine
3

Analysis of signaling pathway activity in single cells using the in situ Proximity Ligation Assay

Arngården, Linda January 2016 (has links)
A cell that senses signals from its environment uses proteins for signal transduction via post translational modifications (PTMs) and protein- protein interactions (PPIs) from cell membrane into the nucleus where genes controlling cell proliferation, differentiation and apoptosis can be turned on or off, i.e. changing the phenotype or fate of the cell. Aberrations within such proteins are prone to cause diseases, such as cancer. Therefore, it is important so study aberrant signaling to be able to understand and treat diseases. In this thesis, signaling aberrations of PTMs and PPIs were analyzed with the use of the in situ proximity ligation assay (in situ PLA), and the thesis also contain method development of rolling circle amplification (RCA), which is the method used for signal amplification of in situ PLA reaction products. Paper I considers the integrity of RCA products. Here, the aim was to generate a smaller and more compact RCA product, for more accurate either visual or automated analysis. This was achieved with the use of an additional so called compaction oligonucleotide that during RCA was able to bind and pull segments of RCA products closer together. The compaction oligonucleotide served to increase the signal to noise ratio and decrease the number of false positive signals. The crosstalk between the Hippo and TGFβ signaling pathways were studied in paper II. Activity of the Hippo signaling pathway is regulated by cell density sensing and tissue control. We found differences in amounts and localization of interactions between the effector proteins of the two pathways depending on cell density and TGFβ stimulation. In paper III the NF-кB signaling pathway constitutively activated in chronic lymphocytic leukemia (CLL) was studied. A 4 base-pair frameshift deletion within the NFKBIE gene, which encodes the negative regulator IкBε, was found among 13 of a total 315 cases by the use of targeted deep sequencing. We found reduced levels of IкBε protein, decreased p65 inhibition, and increased phosphorylation, along with increased nuclear localization of p65 in NFKBIE deleted cases compared to healthy cases. Crosstalk between the Hippo and Wnt signaling pathway are studied within paper IV. Here, we found differences in cellular localization of TAZ/β-catenin interactions depending on colon cancer tumor stage and by further investigate Hippo/WNT crosstalk in cell line model systems we found an increase of complex formations involved in the crosstalk in sparse growing HEK293 cells compared to dense growing cells. Also, active WNT3a signaling was affected by cell density. Since cell density showed to have a big effect on Hippo/WNT crosstalk we continued to investigated the effect of E-cadherin, which has a function in cell junctions and maintenance of epithelial integrity on Hippo/WNT crosstalk. Interestingly, we found that E-cadherin is likely to regulate Hippo/WNT crosstalk.
4

Regulation of Avian Gastrulation by Fibroblast Growth Factor, Non-Canonical Wnt, and Eph-Ephrin Signaling Pathways

Hardy, Katharine January 2008 (has links)
Gastrulation is a key early developmental event that generates the three primary germ layers (ectoderm, mesoderm, and endoderm) from which organ systems subsequently develop. The physical mechanisms of germ layer formation differ significantly in amniotes (reptiles, birds, and mammals) and anamniotes (e.g. frog and fish), as amniote gastrulation includes an epithelial-mesenchymal transition (EMT) that is absent from anamniote gastrulation. Despite this striking difference, much of our knowledge regarding the mechanisms underlying gastrulation is derived from frog and fish studies. To better understand amniote gastrulation, the work herein investigates three signaling pathways that regulate amniote gastrulation with distinct and overlapping functions. The central hypothesis is that multiple signaling pathways function cooperatively to precisely modulate cell migration through the primitive streak during avian gastrulation.First, I describe a novel function of Fibroblast Growth Factor (FGF) signaling in the preingression epiblast adjacent to the avian primitive streak, where it governs the expression of molecules from diverse signaling pathways and transcription factor families, and which is mediated largely through the Ras/MAPK pathway. Importantly, FGF signaling also regulates cell migration during avian gastrulation.Next, I report the isolation of a novel chicken non-canonical Wnt ligand (Wnt11b) that is specifically expressed in the primitive streak and adjacent preingression epiblast during gastrula stages. In gain and loss of function studies, Wnt11b and Wnt5a/b participate in regulating cell migration through the streak in a largely redundant fashion. Signaling specifically targets the non-canonical pathway, as similar cell migration defects are observed with a non-canonical mutant of Dishevelled, and activating the canonical pathway has no effect on cell migration.Finally, I investigate the function of A-class Eph-ephrin signaling during avian gastrulation, and describe that Eph receptor forward signaling negatively regulates the migration of cells through the primitive streak. This modulation of cell migration occurs independently of the EMT that accompanies avian gastrulation, as cells are able to undergo the normal cadherin transition and the basal lamina is unaffected.Altogether, the work presented herein provides a significant contribution to our understanding of signaling pathways that modulate gene expression and ongoing cell migration during germ layer formation in amniote gastrulation.
5

Mechanisms of epidermal growth factor receptor signalling in primary rat hepatocytes

Luo, Yi January 2009 (has links)
In the U.K. deaths due to liver diseases, especially alcohol related diseases, have risen considerably over the last 20 years. In 2005 up to 13,000 people died from liver related diseases within the U.K., including alcohol and viral liver failure and liver cancers. Worldwide hepatitis B affects about 2 billion people, killing 500,000 to 1 million per year. An effective way to treat liver disease is often liver surgery, such as liver resection for cancers and liver transplant for failure. However, the failure of liver regeneration by hepatocyte proliferation after resection surgery leads to a high death rate, and a shortage of liver donors means most people with liver failure die without access to a transplant. Therefore, understanding hepatocyte proliferation is a key to improving survival after resection surgery and providing hepatocytes for cell therapy in place of organ donation. The mechanism of hepatocyte proliferation has been studied both in vivo and in culture by many groups. However, only limited proliferation and preservation of function of primary human and rat hepatocytes, not suitable for clinical use, has been achieved on stimulation with growth factors. This study focuses on the mechanism of epidermal growth factor (EGF) stimulation of rat hepatocyte cell cycle progression and proliferation, including the role of PI3K/Akt/mTOR and MEK/ERK signalling pathways, EGF receptor location after activation of downstream proteins such as protein kinase B (Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2), and their effect on the cell cycle. Included in this study are some comparisons between the stimulation of the EGF receptor (a tyrosine kinase receptor) and the P2Y receptor (a G protein coupled receptor). The PI3K/Akt/mTOR signalling pathway appears to be necessary for the hepatocyte response to EGF, inducing progression to S phase and DNA synthesis, while the MEK/ERK pathway is important but not necessary. The P2Y2 agonist UTP, which also stimulates these two pathways, does not result in the cell entering S phase. This suggests that the activation of these two signalling pathways is not sufficient for cell cycle progression. Furthermore, infection of cells with adenovirus to express constitutively active Akt increases hepatocytes proliferation and induces cell cycle progression, which generates a window to obtain hepatocytes proliferation in culture. It has been shown in this thesis that EGF stimulation of ERK phosphorylation continues from endosomes, while the evidence suggests that UTP stimulation is restricted to signalling at the cell surface. Furthermore, endocytic EGF/EGFR alone (without stimulation from the cell surface) is sufficient to induce cell cycle progression. This endosomal signalling with EGF but not UTP may explain the absence of cell cycle progression following UTP. EGF stimulates the appearance of phospho-EGFR in the nucleus. Furthermore, nuclear EGFR has a different apparent molecule weight than the cytoplasmic receptor; this may be due to nuclear EGFR having fewer and/or different phosphates. In vivo work by others has shown that in liver regeneration following partial hepatectomy (PH) EGF and full-length activated-EGFR were showed to be present in proliferating hepatocytes. This thesis describes the mechanism of growth factor (EGF) stimulation of primary rat hepatocyte proliferation. It shows for the first time that endosomal EGF/EGFR alone is sufficient to stimulate cell cycle progression, and that EGF induces phospho-EGFR in the nucleus in cultured rat hepatocytes. This thesis also provides the possibility to obtain cultured hepatocytes proliferation including over-expression of constitutively active form of Akt and translocation to the nucleus of full-length EGFR in the phosphorylated form. These studies improve our understanding of growth factor (e.g. EGF) stimulation of hepatocyte proliferation in vitro and help to move closer to the goal of obtaining sufficient functional hepatocytes in culture for clinical use, and of drugs that will stimulate hepatocyte proliferation following resection surgery.
6

Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells

Downs, Charles A., Alli, Abdel A., Johnson, Nicholle M., Helms, My N. January 2016 (has links)
There is considerable evidence that cigarette smoking is the primary etiology of chronic obstructive pulmonary disease (COPD), and that oxidative stress occurs in COPD with the family of tissue nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes playing a significant role in lung pathogenesis. The purpose of this study was to determine the effects of cigarette smoke extract (CSE) on Nox signaling to epithelial sodium channels (ENaCs). Pre-treatment with diphenyleneiodonium (DPI), a pan-Nox inhibitor, prevented stimulatory effects of CSE on ENaC activity; open probability (Po) changed from 0.36 +/- 0.09 to 0.11 +/- 0.02; n=10, p=0.01 following CSE and DPI exposure. Likewise, Fulvene-5 (which inhibits Nox2 and Nox4 isoforms) decreased the number of ENaC per patch (from 2.75 +/- 0.25 to 1 +/- 0.5, n=9, p=0.002) and open probability (0.18 +/- 0.08 to 0.02 +/- 0.08, p=0.04). Cycloheximide chase assays show that CSE exposure prevented alpha-ENaC subunit degradation, whereas concurrent CSE exposure in the presence of Nox inhibitor, Fulvene 5, resulted in normal proteolytic degradation of alpha-ENaC protein in primary isolated lung cells. In vivo, co-instillation of CSE and Nox inhibitor promoted alveolar flooding in C57Bl6 mice compared to accelerated rates of fluid clearance observed in CSE alone instilled lungs. Real-time PCR indicates that mRNA levels of Nox2 were unaffected by CSE treatment while Nox4 transcript levels significantly increased 3.5 fold in response to CSE. Data indicate that CSE is an agonist of Nox4 enzymatic activity, and that CSE-mediated Nox4 plays an important role in altering lung ENaC activity.
7

The Role of Integrins in Cellular Response to Mechanical Stimuli

Thomas, Gawain M. 19 January 2017 (has links)
Tissue cells exhibit varying responses according to the stiffness of their extracellular matrix (ECM). The mechanism of this stiffness sensing is not fully understood; however, it is known that cells probe stiffness by applying intracellular force to the ECM via integrin-mediated focal adhesions. The bonds between integrins and ECM have been described as “catch bonds�, and it is unclear how ECM viscoelasticity affects these bonds. We have observed the effects of ECM stiffness on the binding strength of integrins to ECM ligands by measuring the dissociation force of individual integrin-ligand bonds of 3T3 fibroblasts on collagen-coated polyacrylamide gels using atomic force microscopy. Results show that integrins exhibit higher rates of activation on stiff substrates. Furthermore, increased matrix stiffness results in the occurrence of larger, multi-bond dissociation events, which suggests that substrate stiffness may affect the cellular response by promoting integrin clustering as well as by modulating the maximum possible force between individual integrins and the ECM.
8

Orexin Receptors in Recombinant CHO Cells : Signaling to Short- and Long-Term Cell Responses

Ammoun, Sylwia January 2005 (has links)
<p>Recently discovered neuropeptides orexins (orexin-A and -B) act as endogenous ligands for G-protein-coupled receptors called OX<sub>1</sub> and OX<sub>2</sub> receptors. Our previous studies have established model systems for investigation of the pharmacology and signaling of these receptors in recombinant CHO cells. OX<sub>1</sub> receptor-expressing CHO cells were mainly utilized in this thesis.</p><p>Orexin-A and -B activate both OX<sub>1</sub> and OX<sub>2</sub> receptors. However, orexin-B is less potent in activating OX<sub>1</sub> receptors than orexin-A, whereas the peptides are equipotent on OX<sub>2</sub> receptors. We have performed mutagenesis on orexin-A to investigate the basis for this selectivity. We show that OX<sub>2</sub> receptor is generally less affected by the mutations and thus OX<sub>2</sub><sup> </sup>receptor appears to have less strict requirements for ligand binding, likely explaining the lack of difference in affinity/potency between orexin-A and orexin-B on OX<sub>2</sub> receptor.</p><p>The other studies focus on orexin receptor signaling. OX<sub>1</sub> receptors are shown to regulate adenylyl cyclase both in positive and negative manner, activate different MAP-kinases (ERK1/2 and p38) and induce cell death after long-lasting stimulation. Adenylyl cyclase regulation occurs likely through three different G-protein families, Gi, Gs and Gq. For ERK1/2, several downstream pathways, such as Ras, Src, PI3-kinase and protein kinase C (PKC) are implicated. OX<sub>1</sub> receptor-mediated activation of ERK is suggested to be cytoprotective whereas p38 MAP-kinase induces programmed cell death. </p><p>Three particularly interesting findings were made. Firstly, novel PKC δ (delta) is suggested to regulate adenylyl cyclase, whereas conventional and atypical PKCs are involved in activation of ERK. Secondly, adenylyl cyclase and ERK activation is fully dependent on extracellular Ca<sup>2+</sup>. Further experiments suggest that the previously discovered receptor-operated Ca<sup>2+</sup> influx is not affecting the downstream effectors of orexin receptors but that it instead enables orexin receptors to couple to several signal cascades. Thirdly, upon inhibition of caspases, classical mediators of programmed cell death, OX<sub>1 </sub>receptor-mediated cell death is not reversed, but instead the pathways to death are altered so de novo gene transcription is no longer required for cell death.</p>
9

Orexin Receptors in Recombinant CHO Cells : Signaling to Short- and Long-Term Cell Responses

Ammoun, Sylwia January 2005 (has links)
Recently discovered neuropeptides orexins (orexin-A and -B) act as endogenous ligands for G-protein-coupled receptors called OX1 and OX2 receptors. Our previous studies have established model systems for investigation of the pharmacology and signaling of these receptors in recombinant CHO cells. OX1 receptor-expressing CHO cells were mainly utilized in this thesis. Orexin-A and -B activate both OX1 and OX2 receptors. However, orexin-B is less potent in activating OX1 receptors than orexin-A, whereas the peptides are equipotent on OX2 receptors. We have performed mutagenesis on orexin-A to investigate the basis for this selectivity. We show that OX2 receptor is generally less affected by the mutations and thus OX2 receptor appears to have less strict requirements for ligand binding, likely explaining the lack of difference in affinity/potency between orexin-A and orexin-B on OX2 receptor. The other studies focus on orexin receptor signaling. OX1 receptors are shown to regulate adenylyl cyclase both in positive and negative manner, activate different MAP-kinases (ERK1/2 and p38) and induce cell death after long-lasting stimulation. Adenylyl cyclase regulation occurs likely through three different G-protein families, Gi, Gs and Gq. For ERK1/2, several downstream pathways, such as Ras, Src, PI3-kinase and protein kinase C (PKC) are implicated. OX1 receptor-mediated activation of ERK is suggested to be cytoprotective whereas p38 MAP-kinase induces programmed cell death. Three particularly interesting findings were made. Firstly, novel PKC δ (delta) is suggested to regulate adenylyl cyclase, whereas conventional and atypical PKCs are involved in activation of ERK. Secondly, adenylyl cyclase and ERK activation is fully dependent on extracellular Ca2+. Further experiments suggest that the previously discovered receptor-operated Ca2+ influx is not affecting the downstream effectors of orexin receptors but that it instead enables orexin receptors to couple to several signal cascades. Thirdly, upon inhibition of caspases, classical mediators of programmed cell death, OX1 receptor-mediated cell death is not reversed, but instead the pathways to death are altered so de novo gene transcription is no longer required for cell death.
10

cIAP2 Negatively Regulates Proliferation and Tumourigenesis by Repressing IKK Activity and Maintaining p53 Function

Lau, Rosanna 09 May 2012 (has links)
The cellular inhibitor of apoptosis protein (cIAP)-2 plays an important role in the protection against apoptosis by inhibiting the endogenous IAP inhibitor Smac, thus allowing other members of the IAP family, such as XIAP to block caspases. Additionally, cIAP2 functions as a ubiquitin ligase and mediates survival/proliferative signaling through NF-κB. cIAP2 is overexpressed in many human cancers and is believed to play an oncogenic role. This led to the development of small molecule IAP antagonists aimed at eliciting apoptosis in cancer cells. However, the loss of cIAP2 is also associated with multiple myeloma, in which constitutively active NF-κB signaling contributes to pathogenesis of the disease and suggests that cIAP2 may also perform a tumour suppressive function. We demonstrate a novel role for cIAP2 in maintaining p53 levels in mammary epithelial cells that express wildtype p53. Downregulation of cIAP2 resulted in activation of IKKs, which led to increased Mdm2-mediated degradation of p53. cIAP2 depletion also led to increased phosphorylation of ERK1/2. Reduction of p53 levels, in combination with survival signaling provided by NF-κB and MEK-ERK pathways were associated with increased colony formation in vitro and increased DMBA-induced adenocarcinomas in cIAP2-null mice. Treatment of cells with IAP antagonists resulted in significant cytotoxicity only in p53-mutant MDA-MB-231 cells, which was associated with autocrine production of TNF-α. We propose that the transcription of TNF-α is potentiated by gain-of-function mutation in p53 since downregulation of mutant p53 in MDA-MB-231 cells decreased TNF-α mRNA. Downregulation of cIAPs in p53-mutant cells resulted in a decrease in nuclear IKK-α, which may result in decreased IKK-α-mediated survival signaling. In contrast, cIAP downregulation in p53-wildtype cells resulted in no change in nuclear IKK-α, degradation of the corepressor SMRT and cell survival. We show that the effects of cIAP2 downregulation are context-dependent. Downregulation of cIAP2 in p53-wildtype cells results in a decrease in p53 and an increase in survival and proliferative signaling. These results suggest a tumour suppressor function for cIAPs that may account for cIAP mutation-associated cancers such as multiple myeloma. Moreover, our data also defines gain-of-function p53 mutation as a possible contributor to IAP antagonist sensitivity.

Page generated in 0.1608 seconds