Bronchoalveolar lavage (BAL) is an established method providing diagnostic support and evaluation of disease activity in interstitial lung disease (ILD). The aims of the present investigation were 1) to study the inflammatory response in pneumonitis evoked by irradiation. 2) to evaluate how well lung tissue inflammation is reflected in BAL findings. 3) to study the effect of smoking on radiation-induced pneumonitis. BAL was performed in 21 patients (11 smokers, 10 non-smokers) who were treated for breast cancer, stage 1 (TjMaNq) by post-surgery irradiation to an accumulated target dose of 56 Gy. It was founa that irradiation induced an alveolitis in the non-smoking patient group while the smoking patients did not differ from their smoking controls. The alveolitis in non-smokers was characterized by an increase in lymphocytes, mast cells and elevated concentrations of hyaluronan (HA), and fibronectin (FN). Three of the non-smoking patients had chest X-ray infiltrates indicating the presence of pneumonitis. An animal experimental model for radiation-induced pneumonitis and fibrosis was established in rats, allowing comparative analysis of BAL fluid and morphology. In the rat model a divergence was noted between the differential cell counts in BAL and cells observed in the interstitial tissue, which was most notable for neutrophils (PMN) and mast cells whereas there was a good correlation between HA content in BAL and HA deposition in the lung tissue. A marked infiltration of intraseptally-located mast cells occurred during the pneumonitis-phase, and this increase was paralleled by a deposition of HA in the interstitial tissue. Histochemical fixation and staining properties of the mast cells revealed that the majority of these cells were of connective tissue mast cell type (CTMC). Compound 48/80, a mast cell secretagogue, significantly altered the HA content both in BAL and in lung tissue in the irradiated animals. Regular treatment throughout the whole experimental period induced depletion of mast cell granules and a decrease in HA deposition whereas 48/80 treatment during the pneumonitis phase enhanced HA deposition. A rat model with smoke exposure was developed, and the effect of cigarette smoke on radiation-induced inflammation was studied. Rats that smoked 3 weeks prior to irradiation and continued to smoke throughout the observation period (7 weeks) had a significantly reduced inflammatory response compared to irradiated non-smoking rats. The most prominent BAL findings in the smoke-exposed rats were a decrease in PMN, mast cells and a decrease in HA. In conclusion, irradiation induces an alveolitis characterized mainly by mononuclear cells. Mast cells seem to be of importance in the remodelling of the connective tissue in the radiation-induced inflammatory response. Hyaluronan is an important component in the early connective tissue response preceding later collagen deposition, and its interstitial deposition is very well reflected in BAL. Moreover, tobacco-smoke suppresses the radiation-induced inflammation with a decreased recruitment of effector cells including mast cells. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1992, härtill 5 uppsatser.</p> / digitalisering@umu
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-100545 |
Date | January 1992 |
Creators | Nilsson, Kenneth |
Publisher | Umeå universitet, Onkologi, Umeå universitet, Lungmedicin, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 340 |
Page generated in 0.002 seconds