This work deals with the design of a hybrid time integrator that couples spatially explicit and implicit time integrators. In order to cope with the industrial solver of Ariane Group called FLUSEPA, the explicit scheme of Heun and the implicit scheme of Crank-Nicolson are hybridized using the transition parameter : the whole technique is called AION time integration. The latter is studied into details with special focus on spectral behaviour and on its ability to keep the accuracy. It is shown that the hybrid technique has interesting dissipation and dispersion properties while maintaining precision and avoiding spurious waves. Moreover, this hybrid approach is validated on several academic test cases for both convective and diffusive fluxes. And as expected the method is more interesting in term of computational time than standard time integrators. For the extension of this hybrid approach to the temporal adaptive method implemented in FLUSEPA, it was necessary to improve some treatments in order to maintain conservation and acceptable spectral properties. Finally the hybrid time integration was also applied to a RANS/LES turbulent test case with interesting computational time while capturing the flow physics.
Identifer | oai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:24390 |
Date | 12 March 2019 |
Creators | Muscat, Laurent |
Contributors | Institut National Polytechnique de Toulouse - INPT (FRANCE) |
Source Sets | Université de Toulouse |
Language | English |
Detected Language | English |
Type | Thesis, NonPeerReviewed |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://oatao.univ-toulouse.fr/24390/ |
Page generated in 0.002 seconds