This master thesis gives an account for the numerous uncertainties that prevail one-dimensional hydraulic models and flood inundation maps, as well as suitable assessment methods for different types of uncertainties. A conducted uncertainty assessment on the river Voxnan in Sweden has been performed. The case study included the calibra-tion uncertainty in the spatially varying roughness coefficient and the boundary condi-tion uncertainty in the magnitude of a 100-year flood, in present and future climate conditions. By combining a scenario analysis, GLUE calibration method and Monte Carlo analysis, the included uncertainties with different natures could be assessed. Significant uncer-tainties regarding the magnitude of a 100-year flood from frequency analysis was found. The largest contribution to the overall uncertainty was given by the variance between the nine global climate models, emphasizing the importance of including projections from an ensemble of models in climate change studies. Furthermore, the study gives a methodological example on how to present uncertainty estimates visually in probabilistic flood inundation maps. The conducted method of how the climate change uncertainties, scenarios and models, were handled in frequency analysis is also suggested to be a relevant result of the study.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-173848 |
Date | January 2015 |
Creators | Andersson, Sara |
Publisher | KTH, Mark- och vattenteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-LWR Degree Project, 1651-064X ; 2015:23 |
Page generated in 0.0017 seconds