Return to search

Improvements in Fermentative Hydrogen Production through Physiological Manipulation and Metabolic Engineering

La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique.

Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie.

De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément.

En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes.

Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates. / Biological hydrogen (H2) production represents a possible technology for the large scale sustainable production of H2 needed for a future hydrogen economy. However, the major obstacle to developing a practical process has been the low yields that are obtained, typically around 25%, well below those achievable for the production of other biofuels from the same feedstock. The goal of this thesis was to improve H2 production through physiological manipulation and metabolic engineering.

One investigated hypothesis was that H2 production could be improved and made more economical by using a microaerobic dark fermentation process since this could provide the extra reducing power required for driving substrate conversion to completion and hence more H2 production might be obtained without using light energy. The optimal O2 concentrations for microaerobic H2 production were examined as well as the impact of carbon and nitrogen sources on the process. The research reported here proved the capability of Rhodobacter capsulatus JP91 hup- (an uptake-hydrogenase deficient mutant) to produce H2 under microaerobic dark conditions with limiting amounts of O2 and fixed nitrogen. Further work should be undertaken to increase H2 yields using this technology.

In addition, a photofermentation process was established to improve H2 yield from glucose using R. capsulatus JP91 hup- strain either in batch and/or continuous culture conditions. Some technical challenges in establishing the proper operational conditions for increased H2 yield were overcome. A maximum yield of 3.3 mols of H2/ mol of glucose was found for batch cultures whereas in continous cultures it was 10.3 mols H2/ mol glucose, much higher than previously reported and close to the theoretical maximum value of 12 mols H2/ mol glucose. In batch cultures the maximum light conversion efficiency was 0.7% whereas it was 1.34% in continuous cultures with a maximum conversion efficiency of the heating value of glucose of 91.14%. Various approaches to further increasing yields in photofermentation processes are proposed. The overall results suggest that an efficient single stage photofermentative H2 production process from glucose using continuous cultures in photobioreactors could be developed which would be a much more promising alternative process to the previously studied two stage photofermentation or co-culture approaches.

Furthermore, the heterologous expression of hydrogenases was used as a metabolic engineering strategy to improve fermentative H2 production. The capability of expressing a hydrogenase from one species with the maturation genes from another was examined. One strategy demonstrated that the orphan hydA of R. rubrum is functional and active when co-expressed in E. coli with hydE, hydF and hydG from different organisms. Co-expression of the [FeFe]-hydrogenase structural and maturation genes in microorganisms that lack a native [FeFe]-hydrogenase can successfully result in the assembly and biosynthesis of active hydrogenases. However, other factors may be required for significantly increased protein yields and hence the specific activity of the recombinant hydrogenases.

Another strategy was to overexpress one of the highly active [FeFe]-hydrogenases in a suitable E. coli host strain. Expression of a hydrogenase that can directly interact with NADPH is desirable as this, rather than reduced ferredoxin, is naturally produced by its metabolism. However, the successful maturation of this type of hydrogenase in E. coli had not been previously reported. The Desulfovibrio fructosovorans hnd operon (hndA, B, C, and D genes), encoding a NADP-dependent [FeFe]-hydrogenase, was expressed in various E. coli strains with the maturation genes hydE, hydF and hydG of Clostridium acetobutylicum. Hydrogenase activities were detected in vitro, thus a multi-subunit NADP-dependent [FeFe]-active hydrogenase was successfully expressed and matured in E. coli for the first time. Future research could lead to the expression of this hydrogenase in E. coli host strains that overproduce NADPH, setting the stage for increased hydrogen yields via the pentose phosphate pathway.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/9132
Date12 1900
CreatorsAbo-Hashesh, Mona
ContributorsHallenbeck, Patrick
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.003 seconds