Return to search

Water resources availability in the Caledon River basin : past, present and future

The Caledon River Basin is located on one of the most water-scarce region on the African continent. The water resources of the Caledon River Basin play a pivotal role in socio-economic activities in both Lesotho and South Africa but the basin experiences recurrent severe droughts and frequent water shortages. The Caledon River is mostly used for commercial and subsistence agriculture, industrial and domestic supply. The resources are also important beyond the basin’s boundaries as the water is transferred to the nearby Modder River. The Caledon River is also a significant tributary to the Orange-Senqu Basin, which is shared by five southern African countries. However, the water resources in the basin are under continuous threat as a result of rapidly growing population, economic growth as well as changing climate, amongst others. It is therefore important that the hydrological regime and water resources of the basin are thoroughly evaluated and assessed so that they can be sustainably managed and utilised for maximum economic benefits. Climate change has been identified by the international community as one of the most prominent threats to peace, food security and livelihood and southern Africa as among the most vulnerable regions of the world. Water resources are perceived as a natural resource which will be affected the most by the changing climate conditions. Global warming is expected to bring more severe, prolonged droughts and exacerbate water shortages in this region. The current study is mainly focused on investigating the impacts of climate change on the water resources of the Caledon River Basin. The main objectives of the current study included assessing the past and current hydrological characteristics of the Caledon River Basin under current state of the physical environment, observed climate conditions and estimated water use; detecting any changes in the future rainfall and evaporative demands relative to present conditions and evaluating the impacts of climate on the basin’s hydrological regime and water resources availability for the future climate scenario, 2046-2065. To achieve these objectives the study used observed hydrological, meteorological data sets and the basin’s physical characteristics to establish parameters of the Pitman and WEAP hydrological models. Hydrological modelling is an integral part of hydrological investigations and evaluations. The various sources of uncertainties in the outputs of the climate and hydrological models were identified and quantified, as an integral part of the whole exercise. The 2-step approach of the uncertainty version of the model was used to estimate a range of parameters yielding behavioural natural flow ensembles. This approach uses the regional and local hydrological signals to constrain the model parameter ranges. The estimated parameters were also employed to guide the calibration process of the Water Evaluation And Planning (WEAP) model. The two models incorporated the estimated water uses within the basin to establish the present day flow simulations and they were found to sufficiently simulate the present day flows, as compared to the observed flows. There is an indication therefore, that WEAP can be successfully applied in other regions for hydrological investigations. Possible changes in future climate regime of the basin were evaluated by analysing downscaled temperature and rainfall outputs from a set of 9 climate models. The predictions are based on the A2 greenhouse gases emission scenario which assumes a continuous increase in emission rates. While the climate models agree that temperature, and hence, evapotranspiration will increase in the future, they demonstrate significant disagreement on whether rainfall will decrease or increase and by how much. The disagreement of the GCMs on projected future rainfall constitutes a major uncertainty in the prediction of water resources availability of the basin. This is to the extent that according to 7 out of 9 climate models used, the stream flow in four sub-basins (D21E, D22B, D23D and D23F) in the Caledon River Basin is projected to decrease below the present day flows, while two models (IPSL and MIUB) consistently project enhanced water resource availability in the basin in the future. The differences in the GCM projections highlight the margin of uncertainty involved predicting the future status of water resources in the basin. Such uncertainty should not be ignored and these results can be useful in aiding decision-makers to develop policies that are robust and that encompass all possibilities. In an attempt to reduce the known uncertainties, the study recommends upgrading of the hydrological monitoring network within the Caledon River Basin to facilitate improved hydrological evaluation and management. It also suggests the use of updated climate change data from the newest generation climate models, as well as integrating the findings of the current research into water resources decision making process.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:6055
Date January 2015
CreatorsMohobane, Thabiso
PublisherRhodes University, Faculty of Science, Institute for Water Research
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Format231 leaves, pdf
RightsMohobane, Thabiso

Page generated in 0.0055 seconds