Return to search

Computational chemistry investigation of gas-phase structures, infrared spectroscopy, and dissociation pathways of isomeric molecules

While chemical isomers typically have distinct properties, differentiating between them is often an analytical challenge, especially for mass spectrometric methods. Infrared multiple photon dissociation (IRMPD) spectroscopy and ion mobility spectrometry (IMS) can be useful in analysis of such isomeric compounds; however, experimental results alone do not directly provide in-depth structural information. In this thesis, computational chemistry is first used to explain experimental results and understand the conformational preference of the gas phase ions formed from the lithiation of cis-3, cis-4 and trans-4 hydroxyproline isomers and then used in a predictive manner to evaluate IRMPD spectroscopy and IMS as potential paths forward for the characterization of isomeric dye species. Finally, theoretical methods are used to begin to understand the dissociation pathways of lithiated hydroxyproline isomers in the gas phase, which is ongoing.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2132
Date25 November 2020
CreatorsKaushalya, Widana
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.002 seconds