Return to search

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg

Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00744491
Date19 June 2012
CreatorsPetit, Camille
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds