Return to search

Critical Roles of microRNA-141-3p and CHD8 in Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis

Background: Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. Results: We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. Conclusion: MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-10651
Date21 February 2020
CreatorsYao, Bifeng, Wan, Xiaoya, Zheng, Xinbin, Zhong, Ting, Hu, Jia, Zhou, Yu, Qin, Anna, Ma, Yeshuo, Yin, Deling
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETSU Faculty Works
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.0024 seconds