Return to search

MicroRNA-125bProtects Against Myocardial Ischaemia/Reperfusion Injury via Targeting p53-Mediated Apoptotic Signalling and TRAF6

AimsThe present study examined the role of microRNA-125b (miR-125b) in myocardial ischaemia/reperfusion (I/R) injury. We constructed lentivirus-expressing miR-125b (LmiR-125b) and developed transgenic mice with overexpression of miR-125b.Methods and resultsLmiR-125b was transfected into mouse hearts through the right common carotid artery. Lentivirus vector (LmiR-Con) served as vector control. Untreated mice served as I/R control. Sham operation served as sham control. Seven days after transfection, the hearts were subjected to ischaemia (45 min) followed by reperfusion (4 h). Myocardial infarct size was analysed by 2,3,5-triphenyltetrazolium chloride staining. In separate experiments, hearts were subjected to ischaemia (45 min) followed by reperfusion for up to 7 days. Cardiac function was measured by echocardiography before, as well as 3 and 7 days after myocardial I/R. Increased expression of miR-125b significantly decreased I/R-induced myocardial infarct size by 60 and prevented I/R-induced decreases in ejection fraction (EF) and fractional shortening (FS). Transgenic mice with overexpression of miR-125b also showed the protection against myocardial I/R injury. Increased expression of miR-125b attenuated I/R-induced myocardial apoptosis and caspase-3/7 and-8 activities. Western blot showed that increased expression of miR-125b suppresses p53 and Bak1 expression in the myocardium. In addition, transfection of LmiR-125b decreased the levels of TNF receptor-associated factor 6 (TRAF6) and prevented I/R-induced NF-κB activation.ConclusionmiR-125 protects the myocardium from I/R injury by preventing p53-mediated apoptotic signalling and suppressing TRAF6-mediated NF-κB activation.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-16952
Date01 June 2014
CreatorsWang, Xiaohui, Ha, Tuanzhu, Zou, Jianghuan, Ren, Danyang, Liu, Li, Zhang, Xia, Kalbfleisch, John, Gao, Xiang, Williams, David, Li, Chuanfu
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0017 seconds