In the past, industrial control systems (ICS) and supervisory control and data acquisition (SCADA) systems were planned to run as isolated networks, and not interconnect with other networks e.g., the internet or other parts of a corporate’s network. Because of the isolation, no cybersecurity mechanism was required. In the modern society, ICS/SCADA systems has evolved to communicate over public IP networks and has been incorporated in a company’s intranet or directly to the internet. This integration opens up for threats that were not envisioned at the time when the system was created. When ICS/SCADA systems get exposed to the internet, there is a risk that vulnerabilities in the systems get exploited by a malicious force. This can lead to data loss, destruction of data and devices, damage to infrastructure, financial losses for the company, and even loss of human life could occur. To mitigate and prevent attacks it is crucial to understand the attacks and the behaviour of the attacker. One way to achieve this is setting up a system that mimics the real system. This fake system is separated from the production network and closely monitored. The data collected can be analysed and used to gain knowledge about the attacks. This thesis will present a possible way to study attacks on an ICS/SCADA system using a honeypot designed for this purpose. To do this, a suitable honeypot had to be found that could collect relevant data regarding what kind of attacks that may be used against an ICS/SCADA system. This was achieved by experimenting with different set ups, and the collected data was analysed. This led to the use of T-pot as the chosen honeypot and the collected data showed that a lot of the traffic were directed towards the ICS/SCADA communication protocols Modbus and s7comm. To secure an ICS/SCADA system, it is important to gain knowledge about attacks and attack vectors. A honeypot can be a useful tool that provide information regarding attacks and attackers and can be a help in setting up a defence-in-depth strategy to improve the security in an ICS/SCADA network.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-54563 |
Date | January 2021 |
Creators | Albinsson, Felix, Riedl, Jesper |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds