Return to search

Design, fabrication and characterization of a hybrid III-V on silicon transmitter for high-speed communications / Design, fabrication and characterization of a hybrid III-V on silicon transmitter for high-speed communications.

Depuis plusieurs années, le volume de données échangé à travers le monde augmente sans cesse. Pour gérer cette large quantité d’information, des débits élevés de transmission de données sur de longues distances sont essentiels. Puisque les interconnections à base de cuivre ne peuvent pas suivre cette tendance, des systèmes de transmission optique rapides sont requis dans les centre de données. Dans ce contexte, la photonique sur silicium est considérée comme une solution pour obtenir des circuits photoniques intégrés à un coût réduit. Bien que cette technologie ait connu une croissance significative au cours de la dernière décennie, les transmetteurs actuels à haut débit de transmission sont principalement basés sur des sources laser externes. Par conséquent, l’objectif de ce travail de thèse était de concevoir et produire un transmetteur à haut débit de transmission de données pour la photonique sur silicium, doté d’une source laser intégrée.Ce transmetteur se compose d’un modulateur silicium de type Mach-Zehnder, co-intégré sur la même plaque avec un laser hybride III-V sur silicium à réseaux de Bragg distribués, dont la longueur d’onde d’émission peut être contrôlée électriquement autour de 1.3μm. La conception des différents éléments constituant à la fois le laser (coupleurs adiabatique entre le III-V et le silicium, miroirs de Bragg) et le modulateur (jonctions p-n, électrodes à ondes progressives) est détaillée, de même que leur fabrication. Pendant la caractérisation des transmetteurs, des taux de transmission de données jusqu’à 25Gb/s, pour des distances allant jusqu’à 10km ont été démontrés avec succès, avec la possibilité de contrôler la longueur d’onde jusqu’à 8.5nm. Par ailleurs, afin d’améliorer l’intégration de la source laser avec le circuit photonique sur silicium, une solution basée sur le dépôt à basse température (en-dessous de 400°C) d’une couche de silicium amorphe pendant la fabrication est aussi évaluée. Des tests sur une cavité laser à contre-réaction distribuée ont montré des performances au niveau de l’état de l’art (avec des puissances de sortie supérieures à 30mW), prouvant ainsi la viabilité de cette approche. / For several years, the volume of digital data exchanged across the world has increased relentlessly. To manage this large amount of information, high data transmission rates over long distances are essential. Since copper-based interconnections cannot follow this tendency, high-speed optical transmission systems are required in the data centers. In this context, silicon photonics is seen as a way to obtain fully integrated photonic circuits at an expected low cost. While this technology has experienced significant growth in the last decade, the high-speed transmitters demonstrated up to now are mostly based on external laser sources. Thus, the aim of this PhD thesis was to design and produce a high-speed silicon photonic transmitter with an integrated laser source.This transmitter is composed of a high-speed silicon Mach-Zehnder, co-integrated on the same wafer with a hybrid III-V on silicon distributed Bragg reflector laser, which emission wavelength can be electrically tuned in the 1.3μm wavelength region. The design of the various elements constituting both the laser (III-V to silicon adiabatic couplers, Bragg reflectors) and the modulator (p-n junctions, travelling-wave electrodes) is thoroughly detailed, as well as their fabrication. During the characterization of the transmitters, high-speed data transmission rates up to 25Gb/s, for distances up to 10km are successfully demonstrated, with the possibility to tune the operating wavelength up to 8.5nm. Additionally, in order to further improve the integration of the laser source with the silicon photonic circuit, a solution based on the low-temperature (below 400°C) deposition of an amorphous silicon layer during the fabrication process is also evaluated. Tests on a distributed feed-back laser structure have shown performances at the state-of-the-art level (with output powers above 30mW), thus establishing the viability of this approach.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEC054
Date16 December 2016
CreatorsFerrotti, Thomas
ContributorsLyon, Seassal, Christian, Ben Bakir, Badhise
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds