an instance has become exceedingly more time and resource consuming. To solve this issue, cloud computing is being used to train and serve the models. However, there’s a gap in research where these cloud computing platforms have been evaluated for these tasks. This thesis aims to investigate the inference task of an image quality assessment algorithm on different Machine Learning as a Service architecture. The quantitative metrics that are being used for the comparison are latency, inference time, throughput, carbon Footprint, and cost. The utilization of Machine Learning has a wide range of applications, with one of its most popular areas being Image Recognition or Image Classification. To effectively classify an image, it is imperative that the image is of high quality. This requirement is not always met, particularly in situations where users capture images through their mobile devices or other equipment. In light of this, there is a need for an image quality assessment, which can be achieved through the implementation of an Image Quality Assessment Model such as BRISQUE. When hosting BRISQUE in the cloud, there is a plethora of hardware options to choose from. This thesis aims to conduct a benchmark of these hardware options to evaluate the performance and sustainability of BRISQUE’s image quality assessment on various cloud hardware. The metrics for evaluation include inference time, hourly cost, effective cost, energy consumption, and emissions. Additionally, this thesis seeks to investigate the feasibility of incorporating sustainability metrics, such as energy consumption and emissions, into machine learning benchmarks in cloud environments. The results of the study reveal that the instance type from GCP was generally the best-performing among the 15 tested. The Image Quality Assessment Model appeared to benefit more from a higher number of cores than a high CPU clock speed. In terms of sustainability, it was observed that all instance types displayed a similar level of energy consumption, however, there were variations in emissions. Further analysis revealed that the selection of region played a significant role in determining the level of emissions produced by the cloud environment. However, the availability of such sustainability data is limited in a cloud environment due to restrictions imposed by cloud providers, rendering the inclusion of these metrics in Machine Learning benchmarks in cloud environments problematic. / Maskininlärning kan användas till en mängd olika saker. Ett populärt verksamhetsområde inom maskininlärning är bildigenkänning eller bildklassificering. För att utföra bildklassificering på en bild krävs först en bild av god kvalitet. Detta är inte alltid fallet när användare tar bilder i en applikation med sina telefoner eller andra enheter. Därför är behovet av en bildkvalitetskontroll nödvändigt. BRISQUE är en modell för bildkvalitetsbedömning som gör bildkvalitetskontroller på bilder, men när man hyr plats för den i molnet finns det många olika hårdvarualternativ att välja mellan. Denna uppsats avser att benchmarka denna hårdvara för att se hur BRISQUE utför inferens på dessa molnhårdvaror både när det gäller prestanda och hållbarhet där inferensens tid, timpris, effektivt pris, energiförbrukning och utsläpp är de insamlade mätvärdena. Avhandlingen söker också att undersöka möjligheten att inkludera hållbarhetsmetriker som energiförbrukning och utsläpp i en maskininlärningsbenchmark i molnmiljöer. Resultaten av studien visar att en av GCPs instanstyper var generellt den bäst presterande bland de 15 som testades. Bildkvalitetsbedömningsmodellen verkar dra nytta av ett högre antal kärnor mer än en hög CPU-frekvens. Vad gäller hållbarhet observerades att alla instanstyper visade en liknande nivå av energianvändning, men det fanns variationer i utsläpp. Ytterligare analys visade att valet av region hade en betydande roll i bestämningen av nivån av utsläpp som producerades av molnmiljön. Tillgången till sådana hållbarhetsdata är begränsade i en molnmiljö på grund av restriktioner som ställs av molnleverantörer vilket skapar problem om dessa mätvärden ska inkluderas i maskininlärningsbenchmarks i molnmiljöer.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330743 |
Date | January 2023 |
Creators | Petersson, Jesper |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:245 |
Page generated in 0.0028 seconds