Melanoma é um tipo maligno de lesão de pele pigmentada, e atualmente está entre os tipos de câncer existentes mais perigosos. Entretanto, diferenciar casos malignos de benignos é uma tarefa difícil mesmo para experientes especialistas, e um sistema de diagnóstico auxiliado por computador pode ser uma ferramenta bastante útil. Normalmente, este sistema inicia por um pré-processamento da imagem, isto é, remoção de artefatos indesejados, como pelos, sardas ou efeitos de sombreamento. A seguir, o sistema executa uma etapa de segmentação, identificando as bordas da lesão. Por fim, baseando-se na área da imagem identificada como lesão, diversas feições são computadas e uma classificação é gerada. Neste tese, apresentada na forma de uma coleção de artigos publicados, nós apresentamos técnicas para automaticamente executar todos estes passos, resultando em um pré-diagnóstico para uma lesão de pele pigmentada baseado apenas em uma imagem convencional (uma simples fotografia). Nós testamos nossos métodos em bases de imagens públicas e atingimos melhores resultados de segmentação e classificação que os demais métodos presentes na literatura. / Melanoma is a type of malignant pigmented skin lesion, and currently is among the most dangerous existing cancers. However, differentiating malignant and benign cases is a hard task even for experienced specialists, and a computer-aided diagnosis system can be an useful tool. Usually, the system starts by pre-processing the image, i.e. removing undesired artifacts such as hair, freckles or shading effects. Next, the system performs a segmentation step to identify the lesion boundaries. Finally, based on the image area identified as lesion, several features are computed and a classification is provided. In this Thesis, presented as a collection of published papers, we detail approaches to automatically execute all these steps, resulting in a pre-diagnosis for a pigmented skin lesion based only in a standard camera image (i.e. a simple color photograph). We tested our methods on publicly available datasets and achieved better segmentation and classification results than methods previously proposed in the literature.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/72926 |
Date | January 2013 |
Creators | Cavalcanti, Pablo Gautério |
Contributors | Scharcanski, Jacob |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds