Return to search

Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration

The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks. In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction. Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous. / <p>Fel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.</p> / Printed Polymer Electronics on Paper

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-7352
Date January 2011
CreatorsMontibon, Elson
PublisherKarlstads universitet, Avdelningen för kemiteknik, Karlstad : Karlstad University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationKarlstad University Studies, 1403-8099 ; 2011:28

Page generated in 0.002 seconds