• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Cardiac Elastic - 3D Geometrical, Topological, and Micromechanical Properties

Shi, Xiaodan 06 May 2017 (has links)
In cardiac biomechanics, there is an apparent knowledge gap in 3D cardiac elastin structure and its biomechanical roles. In this study, we fill this knowledge gap via novel biomedical imaging and bioengineering means. In Aim 1, we created an overall mapping of 3D microstructures of the epicardial elastin fibers on porcine left ventricles (LV) using a laser scanning confocal microscope. We demonstrated the location- and depth-dependencies of the epicardial elastin network. Histological staining was also applied to reveal the patterns of endocardial and interstitial elastin fibers, as well as elastin fibers associated with the Purkinje fibers. In Aim 2, a novel algorithm was developed to better reconstruct the elastin fiber network and extract topological fiber metrics. We created a “fiberness” mask via fiber segmentation and fiber skeletonization to obtain the one-voxel-thick centerline skeleton and remove spurious fiber branches, thus generating topological and geometrical descriptors and bringing the study of cardiac elastin to a new level. In Aim 3, we successfully developed a semi-quantitative approach to characterize the residual stress in the epicardial layer by calculating the total angular change due to curling. Our novel curling angle characterization clearly reveals the existence of residual stress as well as the direction (circumferential vs. longitudinal) and location-dependency of the residual stress. In Aim 4, for the first time we estimated the regional residual stress of the epicardial layer on the intact LV via a four-step methodology: (i) quantify regional residual strains by comparing in situ and stressree marker dimensions; (ii) obtain regional tension-stretch/stress-stretch curves along the circumferential and longitudinal directions; (iii) adjust the biaxial curves to the 0g load reference; (iv) estimate the circumferential and longitudinal residual stresses via residual strains. This method accurately estimates the residual stress in the epicardial layer in various LV anatomical locations. We found that the location-dependency of circumferential and longitudinal residual stresses correlates with the curvature of heart surfaces. Our studies show that the epicardial layer, with its rich elastin content, might function as a balloon that wraps around the heart, and the residual stress sets up a boundary condition that assists with LV contraction.
2

Optický přenos informací - bezpečnost přenosu / Optical information transmission - transmission security

Kondicz, Dávid January 2015 (has links)
The submitted work deals with issues of optical transmissions and its security. We will become familiar with a variety of transferability of information, based on which we can assess the advantages and disadvantages of each technology as compared to optical information transmission. Based on acquired information we will try to implement interception of optical communication of cable TV provider.
3

Velocity measurements in a fiber suspension flow: formation of a fiber network

Bellani, Gabriele January 2008 (has links)
The aim of the present work is to experimentally study the dynamics of the formation of a fiber network formed from the filtration of a fiber suspension. This is relevant for all industrial applications (e.g. papermaking, productions of composite material, etc.) where a suspension of fibers has to flow through narrow gaps, and the quality of the product depends on the distribution of mass and orientation of the fibers. To study the dynamics of network formation, we developed an experimental setup where the filtration of a fiber suspension through a semi-permeable screen can be studied. In the setup, both the fluid and the solid phase can be visualized. The focus of the present thesis is to study the fluid flow generated during the filtration. Index of refraction matching, image processing and particle image velocimetry have been used to measure the velocity field in the proximity of the resulting fiber network. Experiments with varying fiber length and filtration velocity have been performed. The disturbances generated by the screen and the forming network was found to be confined in a region (boundary region), whose extension varies with time: first, after the formation of the first fiber layers, the extent of the boundary region increases; at later times, the boundary region is thinner. The extent appears to be correlated to the gap size either of the screen (at very early times) or of the fiber network, but independent of the filtration velocity. Fluctuations on a scale larger than a fiber length are also observed during the filtration process. These fluctuations are found to be correlated to the nondimensional number Se that relates the sedimentation velocity of a fiber to the filtration velocity. The governing non-dimensional parameters are derived from the equations. The parameters are used to relate the experimental observations to the dewatering process in papermaking. / QC 20101103
4

Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration

Montibon, Elson January 2011 (has links)
The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks. In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction. Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous. / <p>Fel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.</p> / Printed Polymer Electronics on Paper
5

Micromechanical Numeric Investigation of Fiber Bonds in 3D Network Structures.

AZİZOĞLU, YAĞIZ January 2014 (has links)
In manufacturing of paper and paperboard, optimized fiber usage has crucial importance for process efficiency and profitability. Dry strength of paper is one of the important quality criteria, which can be improved by adding dry strength additive that affect fiber to fiber bonding. This study is using the micromechanical simulations which assist interpretation of the experimental results concerning the effect of strength additives. A finite element model for 3D dry fiber network was constructed to study the effect of bond strength, bond area and the number of bonds numerically on the strength of paper products. In the network, fibers’ geometrical properties such as wall thickness, diameter, length and curl were assigned according to fiber characterization of the pulp and SEM analyses of dry paper cross-section. The numerical network was created by depositing the fibers onto a flat surface which should mimic the handsheet-making procedure. In the FE model, each fiber was represented with a number of quadratic Timoshenko beam elements where fiber to fiber bonds were modelled by beam-to-beam contact. The contact model is represented by cohesive zone model, which needs bond strength and bond stiffness in normal and shear directions. To get a reasonable estimate of the bond stiffness, a detailed finite element model of a fiber bond was used. Additionally, the effect of different fiber and bond geometries on bond stiffness were examined by this model since the previous work [13] indicated that the bond stiffness can have a considerable effect on dry strength of paper. The network simulation results show that the effect of the strength additive comes through improving the bond strength primarily. Furthermore, with the considered sheet structure, both the fiber bond compliance and the number of bonds affect the stiffness of paper. Finally, the results of the analyses indicated that the AFM measurements of the fiber adhesion could not be used directly to relate the corresponding changes in the bond strength. The fiber bond simulation concluded that fiber wall thickness has the most significant effect on the fiber bond compliance. It was also affected by micro-fibril orientation angle, bond orientation and the degree of pressing.
6

Self-Assembly of Poly(Ethylene Oxide)-Block-Poly(Ethyl Acrylate)-Block-Polystyrene with Phenolic Resins

Deng, Guodong 28 May 2014 (has links)
No description available.
7

Dreidimensionale Strukturanalyse und Modellierung des Kraft-Dehnungsverhaltens von Fasergefügen

Wolfinger, Tobias 14 March 2017 (has links) (PDF)
Der Einsatz von Fasergefügen und insbesondere von Papier geht heute über dessen ursprüngliches Anwendungsgebiet als Informationsträger weit hinaus. Mit alternativen und neuen Aufgabenfeldern des Papiers kommen auch weitere, qualitative Anforderungen hinzu, welche es während der Herstellung, Weiterverarbeitung und Nutzung erfüllen muss. In der Vergangenheit stand verstärkt z.B. die Verbesserung der statischen und dynamischen Festigkeitseigenschaften im Vordergrund. Für viele Anwendungsfälle spielt jedoch auch die Dehnung eine entscheidende Rolle. Beispiele sind Sackpapier oder Elektroisolationspapier. Darum verfolgt diese Arbeit das Ziel, systematisch und anhand eines neuen Dehnungsmodells, qualitativ und quantitativ die Einflüsse der Faser- und Gefügeeigenschaften anhand ausgewählter Prozessbedingungen auf das Kraft-Dehnungsverhalten, aber insbesondere auf dessen Dehnung zu untersuchen. Des Weiteren wurde eine Methode entwickelt, mit der es unter Nutzung eines Röntgen-Computertomographen möglich ist, weitere Gefügeparameter, auch während einer semi-dynamischen Zugprüfung in-situ zu ermitteln. Für die Bewertung der Fasereigenschaften wurden vier Faserstoffe ausgewählt. Zum Einsatz kam ein ungebleichter Nadelholzsulfatzellstoff (UKP), ein gebleichter Eukalyptuszellstoff, Baumwolllinters und Tencel, eine synthetische Cellulosefaser. Diese Faserstoffe sind chemisch und morphologisch analysiert worden, bevor sie sowohl überwiegend fibrillierend als auch überwiegend kürzend in einem Refiner gemahlen wurden. Nach unterschiedlich hohem Eintrag an massenspezifischer Mahlarbeit in den Faserstoff wurden aus der Suspension Papiermuster gebildet, schrumpfungsbehindert getrocknet und charakterisiert. Durch die Mahlung der Faserstoffe erfolgte eine Reduktion deren mittlerer längengewichteter Faserkonturlänge, der Feinstoffanteil konnte gesteigert werden und das Wasserrückhaltevermögen nahm zu. Es konnte ein unterschiedliches Verhalten der Entwicklung des Wasserrückhaltevermögens zwischen dem ungebleichten Nadelholzsulfatzellstoff und dem gebleichten Eukalyptus gegenüber den Baumwolllinters und den Tencelfasern gefunden werden. Das Wasserrückhaltevermögen von Baumwolllinters und den Tencelfasern blieb, unabhängig von der Mahlstrategie, fast bis zum maximalen Eintrag an massenspezifischer Mahlarbeit von ca. 770 kWh/t unbeeinflusst. Mit den erhaltenen Kraft-Dehnungsdiagrammen der Papiermuster, welche durch eine uniaxiale Zugprüfung mit konstanter Dehnungsgeschwindigkeit messtechnisch erfasst wurden, konnte durch eine Kurveneinpassung mit dem entwickelten Dehnungsmodell das jeweilige Kraft-Dehnungsverhalten mathematisch nachgebildet werden. Dieser neue Modellansatz wurde gewählt, nachdem die Auswertung des Ansatzes von Paetow [77;78;79;90] zu große Abweichungen bei bestimmten Papiermustern aufzeigte. Dies ermöglichte die quantitative Auswertung relevanter Parameter der Kraft-Dehnungskurven. Dabei wurden der Elastizitätsmodul, die Reißlänge und die Dehnung bei maximaler Reißlänge bewertet. Eine sehr hohe Reißlänge konnte mit einem fibrillierend gemahlenem, ungebleichtem Nadelholzsulfatzellstoff und eine hohe Dehnung mit einem, ebenfalls fibrillierend gemahlenem Eukalyptuszellstoff erreicht werden. Des Weiteren sind die Reißlänge am Übergang von einem initial linearen in den nicht-linearen Kurventeil, ein Abknickfaktor sowie der weitere Kurvenverlauf nach dem nicht-linearen Bereich, bis zur maximalen Reißlänge des Gefüges bewertet worden. Der letzte Kurvenbereich wurde entweder durch den weiteren, nicht-linearen Verlauf oder durch einen sekundären Linearbereich charakterisiert. Der von Seth und Page [22] dargestellte Einfluss der Faserstoffmahlung auf den Verlauf der Kraft-Dehnungskurve von Papier konnte nicht nachgebildet werden. Dies zeigte auch, dass die in dieser Arbeit gewonnenen Erkenntnisse durch eine Korrektur des Elastizitätsmoduls mit den Kraft-Dehnungskurven nicht mit den Ergebnissen aus [22] übereinstimmen. Die Faserstoffmahlung hat demnach nicht nur einen Einfluss auf die maximal erreichbare Reißlänge und Dehnung, sondern beeinflusst auch den qualitativen Verlauf der Kraft-Dehnungskurve von Papier. Es konnten keine individuellen Einflussgröße der Fasermorphologie und der Prozessparameter auf die Dehnung oder das Kraft-Dehnungsverhalten festgestellt werden, da sich die meisten dieser Eigenschaften direkt mit der eingebrachten, massenspezifischen Mahlarbeit verändern, die Papierdehnung jedoch schon nach Erreichen einer moderaten massenspezifischen Mahlarbeit von ca. 100 – 200 kWh/t nicht weiter steigern ließ. Für eine weitere Bewertung der Einflüsse auf das Kraft-Dehnungsverhalten von Papier wurden Messwerte aus [143] analysiert. Dabei zeigte sich, dass ein Anstieg an Fasern mit einer hohen Faserkräuselung die Reißlänge des Papiers sowie den Elastizitätsmodul signifikant reduziert. Die Reißlänge am Kurvenübergang vom initial linearen in den nicht-linearen Teil bleibt dabei jedoch konstant. Ein anderes Verhalten, welches mit den Ergebnissen von Seth und Page [22] sowie Lowe [12] übereinstimmt, ist die Auswirkung eines kationischen Additivs wie z.B. Stärke auf die Entwicklung des Kraft-Dehnungsverhaltens. Es konnte nachgewiesen werden, dass das Additiv keinerlei Einfluss auf den initial linearen sowie den nicht-linearen Teil der Kraft-Dehnungskurve hat, sondern nur den sekundären, linearen Kurvenbereich in Abhängigkeit der Dosiermenge beeinflusst. Dabei wurde die Steigung im sekundären Linearbereich bestimmt. Dieses Verhalten führte zu einer Erweiterung der Theorie von Kallmes [82], welcher nach einem Anstieg der Festigkeit und der Dehnung, ab einer kritischen, relativen Bindungsfläche nur noch einen Anstieg der Festigkeit vorhersagte, jedoch nicht mehr der Dehnung. Auf Grund der in dieser Arbeit gewonnenen Erkenntnisse müssen drei Fälle der Entwicklung des Kraft-Dehnungsverhaltens von Fasergefügen unterschieden werden, welche primär von der Homogenität der Spannungsverteilung im Fasergefüge abhängig sind und z.B. durch die Faserkräuselung oder Blattformation beeinflusst werden kann. Diese neue Ansicht basiert auf dem Verhältnis zwischen der Bindungsenergie der Faser-Faserbindung und dem formbasierten sowie dem längenbasierten Arbeitsaufnahmevermögen der Fasern. Der erste Fall der Gefügedehnung beschreibt das Verhalten, wenn die Bindungsenergie geringer ist als das formbasierte Arbeitsaufnahmevermögen. Dies führt zu einem Auseinandergleiten des Fasergefüges. Dieses Verhalten konnte mit der Analyse von Papierproben aus Linters im Röntgen-Computertomograph qualitativ nachgewiesen werden. Steigt die Bindungsenergie an, wie es der zweite Fall voraussetzt, kann das formbasierte Arbeitsvermögen der Fasern überwunden werden und steht als Dehnvermögen zur Verfügung. Um auch, wie es der dritte Fall beschreibt, das längenbasierte Dehnvermögen der Fasern nutzen zu können, muss die Bindungsenergie zusätzlich durch z.B. ein Additiv oder hohe Drücke in einer Nasspresse weiter steigen. Die erweiterte Theorie bildet nun das gesamte Kraft-Dehnungsverhalten von Fasergefügen ab und muss in weiteren Arbeiten zur Papieranalyse verifiziert werden. Eine wertvolle Ergänzung der zu ermittelnden Gefügeparameter kann durch die entwickelte Methode mit der Röntgen-Computertomographie geleistet werden.
8

Dreidimensionale Strukturanalyse und Modellierung des Kraft-Dehnungsverhaltens von Fasergefügen

Wolfinger, Tobias 25 November 2016 (has links)
Der Einsatz von Fasergefügen und insbesondere von Papier geht heute über dessen ursprüngliches Anwendungsgebiet als Informationsträger weit hinaus. Mit alternativen und neuen Aufgabenfeldern des Papiers kommen auch weitere, qualitative Anforderungen hinzu, welche es während der Herstellung, Weiterverarbeitung und Nutzung erfüllen muss. In der Vergangenheit stand verstärkt z.B. die Verbesserung der statischen und dynamischen Festigkeitseigenschaften im Vordergrund. Für viele Anwendungsfälle spielt jedoch auch die Dehnung eine entscheidende Rolle. Beispiele sind Sackpapier oder Elektroisolationspapier. Darum verfolgt diese Arbeit das Ziel, systematisch und anhand eines neuen Dehnungsmodells, qualitativ und quantitativ die Einflüsse der Faser- und Gefügeeigenschaften anhand ausgewählter Prozessbedingungen auf das Kraft-Dehnungsverhalten, aber insbesondere auf dessen Dehnung zu untersuchen. Des Weiteren wurde eine Methode entwickelt, mit der es unter Nutzung eines Röntgen-Computertomographen möglich ist, weitere Gefügeparameter, auch während einer semi-dynamischen Zugprüfung in-situ zu ermitteln. Für die Bewertung der Fasereigenschaften wurden vier Faserstoffe ausgewählt. Zum Einsatz kam ein ungebleichter Nadelholzsulfatzellstoff (UKP), ein gebleichter Eukalyptuszellstoff, Baumwolllinters und Tencel, eine synthetische Cellulosefaser. Diese Faserstoffe sind chemisch und morphologisch analysiert worden, bevor sie sowohl überwiegend fibrillierend als auch überwiegend kürzend in einem Refiner gemahlen wurden. Nach unterschiedlich hohem Eintrag an massenspezifischer Mahlarbeit in den Faserstoff wurden aus der Suspension Papiermuster gebildet, schrumpfungsbehindert getrocknet und charakterisiert. Durch die Mahlung der Faserstoffe erfolgte eine Reduktion deren mittlerer längengewichteter Faserkonturlänge, der Feinstoffanteil konnte gesteigert werden und das Wasserrückhaltevermögen nahm zu. Es konnte ein unterschiedliches Verhalten der Entwicklung des Wasserrückhaltevermögens zwischen dem ungebleichten Nadelholzsulfatzellstoff und dem gebleichten Eukalyptus gegenüber den Baumwolllinters und den Tencelfasern gefunden werden. Das Wasserrückhaltevermögen von Baumwolllinters und den Tencelfasern blieb, unabhängig von der Mahlstrategie, fast bis zum maximalen Eintrag an massenspezifischer Mahlarbeit von ca. 770 kWh/t unbeeinflusst. Mit den erhaltenen Kraft-Dehnungsdiagrammen der Papiermuster, welche durch eine uniaxiale Zugprüfung mit konstanter Dehnungsgeschwindigkeit messtechnisch erfasst wurden, konnte durch eine Kurveneinpassung mit dem entwickelten Dehnungsmodell das jeweilige Kraft-Dehnungsverhalten mathematisch nachgebildet werden. Dieser neue Modellansatz wurde gewählt, nachdem die Auswertung des Ansatzes von Paetow [77;78;79;90] zu große Abweichungen bei bestimmten Papiermustern aufzeigte. Dies ermöglichte die quantitative Auswertung relevanter Parameter der Kraft-Dehnungskurven. Dabei wurden der Elastizitätsmodul, die Reißlänge und die Dehnung bei maximaler Reißlänge bewertet. Eine sehr hohe Reißlänge konnte mit einem fibrillierend gemahlenem, ungebleichtem Nadelholzsulfatzellstoff und eine hohe Dehnung mit einem, ebenfalls fibrillierend gemahlenem Eukalyptuszellstoff erreicht werden. Des Weiteren sind die Reißlänge am Übergang von einem initial linearen in den nicht-linearen Kurventeil, ein Abknickfaktor sowie der weitere Kurvenverlauf nach dem nicht-linearen Bereich, bis zur maximalen Reißlänge des Gefüges bewertet worden. Der letzte Kurvenbereich wurde entweder durch den weiteren, nicht-linearen Verlauf oder durch einen sekundären Linearbereich charakterisiert. Der von Seth und Page [22] dargestellte Einfluss der Faserstoffmahlung auf den Verlauf der Kraft-Dehnungskurve von Papier konnte nicht nachgebildet werden. Dies zeigte auch, dass die in dieser Arbeit gewonnenen Erkenntnisse durch eine Korrektur des Elastizitätsmoduls mit den Kraft-Dehnungskurven nicht mit den Ergebnissen aus [22] übereinstimmen. Die Faserstoffmahlung hat demnach nicht nur einen Einfluss auf die maximal erreichbare Reißlänge und Dehnung, sondern beeinflusst auch den qualitativen Verlauf der Kraft-Dehnungskurve von Papier. Es konnten keine individuellen Einflussgröße der Fasermorphologie und der Prozessparameter auf die Dehnung oder das Kraft-Dehnungsverhalten festgestellt werden, da sich die meisten dieser Eigenschaften direkt mit der eingebrachten, massenspezifischen Mahlarbeit verändern, die Papierdehnung jedoch schon nach Erreichen einer moderaten massenspezifischen Mahlarbeit von ca. 100 – 200 kWh/t nicht weiter steigern ließ. Für eine weitere Bewertung der Einflüsse auf das Kraft-Dehnungsverhalten von Papier wurden Messwerte aus [143] analysiert. Dabei zeigte sich, dass ein Anstieg an Fasern mit einer hohen Faserkräuselung die Reißlänge des Papiers sowie den Elastizitätsmodul signifikant reduziert. Die Reißlänge am Kurvenübergang vom initial linearen in den nicht-linearen Teil bleibt dabei jedoch konstant. Ein anderes Verhalten, welches mit den Ergebnissen von Seth und Page [22] sowie Lowe [12] übereinstimmt, ist die Auswirkung eines kationischen Additivs wie z.B. Stärke auf die Entwicklung des Kraft-Dehnungsverhaltens. Es konnte nachgewiesen werden, dass das Additiv keinerlei Einfluss auf den initial linearen sowie den nicht-linearen Teil der Kraft-Dehnungskurve hat, sondern nur den sekundären, linearen Kurvenbereich in Abhängigkeit der Dosiermenge beeinflusst. Dabei wurde die Steigung im sekundären Linearbereich bestimmt. Dieses Verhalten führte zu einer Erweiterung der Theorie von Kallmes [82], welcher nach einem Anstieg der Festigkeit und der Dehnung, ab einer kritischen, relativen Bindungsfläche nur noch einen Anstieg der Festigkeit vorhersagte, jedoch nicht mehr der Dehnung. Auf Grund der in dieser Arbeit gewonnenen Erkenntnisse müssen drei Fälle der Entwicklung des Kraft-Dehnungsverhaltens von Fasergefügen unterschieden werden, welche primär von der Homogenität der Spannungsverteilung im Fasergefüge abhängig sind und z.B. durch die Faserkräuselung oder Blattformation beeinflusst werden kann. Diese neue Ansicht basiert auf dem Verhältnis zwischen der Bindungsenergie der Faser-Faserbindung und dem formbasierten sowie dem längenbasierten Arbeitsaufnahmevermögen der Fasern. Der erste Fall der Gefügedehnung beschreibt das Verhalten, wenn die Bindungsenergie geringer ist als das formbasierte Arbeitsaufnahmevermögen. Dies führt zu einem Auseinandergleiten des Fasergefüges. Dieses Verhalten konnte mit der Analyse von Papierproben aus Linters im Röntgen-Computertomograph qualitativ nachgewiesen werden. Steigt die Bindungsenergie an, wie es der zweite Fall voraussetzt, kann das formbasierte Arbeitsvermögen der Fasern überwunden werden und steht als Dehnvermögen zur Verfügung. Um auch, wie es der dritte Fall beschreibt, das längenbasierte Dehnvermögen der Fasern nutzen zu können, muss die Bindungsenergie zusätzlich durch z.B. ein Additiv oder hohe Drücke in einer Nasspresse weiter steigen. Die erweiterte Theorie bildet nun das gesamte Kraft-Dehnungsverhalten von Fasergefügen ab und muss in weiteren Arbeiten zur Papieranalyse verifiziert werden. Eine wertvolle Ergänzung der zu ermittelnden Gefügeparameter kann durch die entwickelte Methode mit der Röntgen-Computertomographie geleistet werden.
9

Micromechanical Investigation of the Effect of Refining on the Mechanical Properties of the Middle Ply of a Paperboard.

Sandin, Sofia January 2014 (has links)
Optimized fiber utilization is crucial to the process efficiency and profitability in paper and board making. The fibers can be developed in a refining process in order to reach a desired quality level. Refining causes a variety of simultaneous structural changes to the fibers such as internal fibrillation, external fibrillation and fines formation that contribute in different ways to improve the sheet consolidation and enforce bonding between fibers. This increases the strength, which is one of the quality parameters of paper. Three grades of refining are studied. Microscopy of the pulps shows that the fines are not a homogeneous fraction. However, in analyzing SEM images of the handsheet surfaces, fibrillar fines and their bundles are observed to form links between neighboring fibers which can reinforce the network and the bond regions. The fiber characterization method by FiberLab only captures trends in changed fines content in the pulps and these are underestimations since the instruments optical resolution is limited in characterizing fibrillar fines. SEM images of the cross sections of the sheets along with thickness measurements show that increased grade of refining causes a densification of the sheets. Tensile tests show that refining results in a significant increase in tensile strength and stiffness but a more modest increase in strain at break. A 3D fiber network model is built with a deposition technique according to experimental results. Introducing fines in the same way as fibers and increasing the amount of fibrillar fines does not affect the thickness significantly. The densification is instead captured either by changing the width-to-height ratio of the fiber cross sections or by changing the flexibility of the fibers through the so-called interface angle, both having a large impact on the thickness. But SEM images suggest that the width-height-ratio did not reveal a significant change between the three grades of refining. The effect of refining on the mechanical properties is studied numerically using micromechanical simulations which assist interpretation of experimental results. The FE network simulations show that the thickness change alone cannot explain the increased stiffness observed in physical experiments. The addition of fines fraction modelled to capture the fibrillar fines observed in SEM images proved to have a large impact on stiffness comparable to that of experiments. Thus the increased stiffness is partly due to increased number of contacts after densification and partly due to the addition of fines. / Optimerad användning av fibrerna är avgörande för processeffektivitet och lönsamhet i tillverkningen av papper och kartong. Fibrerna kan vidareutvecklas genom ytterligare mekanisk malning för att nå önskad fiberkvalitet. Malning leder till en mängd simultana strukturförändringar av fibrerna såsom inre fibrillering, yttre fibrillering och bildning av så kallade fines, finare partiklar, som på olika sätt bidrar till att förbättra pappersarkens sammansättning och förstärka bindningen mellan fibrer. Detta förbättrar pappersstyrkan vilken är en av kvalitetsparametrarna hos papper. Tre malgrader har studerats. Mikroskopbilder av pappersmassan visar att de finare partiklarna inte är en homogen sammansättning. Men i analysen av SEM bilder av pappersarkens ytor så kan fibriller och grupper av fibriller observeras bilda länkar mellan angränsande fibrer vilka kan förstärka fibernätverket och fibrernas bindningsregioner. Fiberkarakteriseringsmetoden utförd av FiberLab kan bara fånga trender i mängden fines i pappersmassorna och dessa är underskattningar eftersom instrumentets optiska upplösning är begränsad i karakteriseringen av fibriller. SEM bilder av arkens tvärsnitt tillsammans med tjockleksmätningar visar på att ökad malgrad resulterar i en förtätning av arken. Dragprov visar att ökad malgrad leder till en märkbar ökad styrka och styvhet men en något blygsammare ökning i töjningsgräns. En 3D fibernätverksmodell skapas med en depositionsteknik enligt experimentella resultat. Genom att introducera fines på samma sätt som fibrer och öka antalet visade sig inte ha någon signifikant inverkan på nätverkets tjocklek. Istället fångas förtätningen av arken på två andra sätt i genereringen av fibernätverket, antingen genom ändring av bredd-höjd kvoten av fibrernas tvärsnitt eller genom förändring av fibrernas flexibilitet med användandet av den så kallade interfacevinkeln, vilka båda har stor inverkan på tjockleken. Men SEM bilder av tvärsnitten visade ingen stor skillnad hos bredd-höjd kvoten mellan de tre malgraderna. Malgradens påverkan på de mekaniska egenskaperna studeras numeriskt genom mikromekaniska simuleringar, vilka jämförs med experimentella resultat. Finita element simuleringarna visar att tjockleksändringen inte ensamt kan förklara den ökade styvheten som observerats i dragproven. Tillägget av fines modellerade att fånga fibrillernas egenskaper observerade i SEM bilder visade sig ha en stor inverkan på styvheten, jämförbar med dragproven. Alltså, den ökade styvheten beror dels på ökat antal kontaktpunkter efter förtätning av arken och dels på innehållet av fines.
10

A Multiscale Framework to Analyze Tricuspid Valve Biomechanics

THOMAS, VINEET SUNNY January 2018 (has links)
No description available.

Page generated in 0.0432 seconds