• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micromechanical Numeric Investigation of Fiber Bonds in 3D Network Structures.

AZİZOĞLU, YAĞIZ January 2014 (has links)
In manufacturing of paper and paperboard, optimized fiber usage has crucial importance for process efficiency and profitability. Dry strength of paper is one of the important quality criteria, which can be improved by adding dry strength additive that affect fiber to fiber bonding. This study is using the micromechanical simulations which assist interpretation of the experimental results concerning the effect of strength additives. A finite element model for 3D dry fiber network was constructed to study the effect of bond strength, bond area and the number of bonds numerically on the strength of paper products. In the network, fibers’ geometrical properties such as wall thickness, diameter, length and curl were assigned according to fiber characterization of the pulp and SEM analyses of dry paper cross-section. The numerical network was created by depositing the fibers onto a flat surface which should mimic the handsheet-making procedure. In the FE model, each fiber was represented with a number of quadratic Timoshenko beam elements where fiber to fiber bonds were modelled by beam-to-beam contact. The contact model is represented by cohesive zone model, which needs bond strength and bond stiffness in normal and shear directions. To get a reasonable estimate of the bond stiffness, a detailed finite element model of a fiber bond was used. Additionally, the effect of different fiber and bond geometries on bond stiffness were examined by this model since the previous work [13] indicated that the bond stiffness can have a considerable effect on dry strength of paper. The network simulation results show that the effect of the strength additive comes through improving the bond strength primarily. Furthermore, with the considered sheet structure, both the fiber bond compliance and the number of bonds affect the stiffness of paper. Finally, the results of the analyses indicated that the AFM measurements of the fiber adhesion could not be used directly to relate the corresponding changes in the bond strength. The fiber bond simulation concluded that fiber wall thickness has the most significant effect on the fiber bond compliance. It was also affected by micro-fibril orientation angle, bond orientation and the degree of pressing.
2

Micromechanical Investigation of the Effect of Refining on the Mechanical Properties of the Middle Ply of a Paperboard.

Sandin, Sofia January 2014 (has links)
Optimized fiber utilization is crucial to the process efficiency and profitability in paper and board making. The fibers can be developed in a refining process in order to reach a desired quality level. Refining causes a variety of simultaneous structural changes to the fibers such as internal fibrillation, external fibrillation and fines formation that contribute in different ways to improve the sheet consolidation and enforce bonding between fibers. This increases the strength, which is one of the quality parameters of paper. Three grades of refining are studied. Microscopy of the pulps shows that the fines are not a homogeneous fraction. However, in analyzing SEM images of the handsheet surfaces, fibrillar fines and their bundles are observed to form links between neighboring fibers which can reinforce the network and the bond regions. The fiber characterization method by FiberLab only captures trends in changed fines content in the pulps and these are underestimations since the instruments optical resolution is limited in characterizing fibrillar fines. SEM images of the cross sections of the sheets along with thickness measurements show that increased grade of refining causes a densification of the sheets. Tensile tests show that refining results in a significant increase in tensile strength and stiffness but a more modest increase in strain at break. A 3D fiber network model is built with a deposition technique according to experimental results. Introducing fines in the same way as fibers and increasing the amount of fibrillar fines does not affect the thickness significantly. The densification is instead captured either by changing the width-to-height ratio of the fiber cross sections or by changing the flexibility of the fibers through the so-called interface angle, both having a large impact on the thickness. But SEM images suggest that the width-height-ratio did not reveal a significant change between the three grades of refining. The effect of refining on the mechanical properties is studied numerically using micromechanical simulations which assist interpretation of experimental results. The FE network simulations show that the thickness change alone cannot explain the increased stiffness observed in physical experiments. The addition of fines fraction modelled to capture the fibrillar fines observed in SEM images proved to have a large impact on stiffness comparable to that of experiments. Thus the increased stiffness is partly due to increased number of contacts after densification and partly due to the addition of fines. / Optimerad användning av fibrerna är avgörande för processeffektivitet och lönsamhet i tillverkningen av papper och kartong. Fibrerna kan vidareutvecklas genom ytterligare mekanisk malning för att nå önskad fiberkvalitet. Malning leder till en mängd simultana strukturförändringar av fibrerna såsom inre fibrillering, yttre fibrillering och bildning av så kallade fines, finare partiklar, som på olika sätt bidrar till att förbättra pappersarkens sammansättning och förstärka bindningen mellan fibrer. Detta förbättrar pappersstyrkan vilken är en av kvalitetsparametrarna hos papper. Tre malgrader har studerats. Mikroskopbilder av pappersmassan visar att de finare partiklarna inte är en homogen sammansättning. Men i analysen av SEM bilder av pappersarkens ytor så kan fibriller och grupper av fibriller observeras bilda länkar mellan angränsande fibrer vilka kan förstärka fibernätverket och fibrernas bindningsregioner. Fiberkarakteriseringsmetoden utförd av FiberLab kan bara fånga trender i mängden fines i pappersmassorna och dessa är underskattningar eftersom instrumentets optiska upplösning är begränsad i karakteriseringen av fibriller. SEM bilder av arkens tvärsnitt tillsammans med tjockleksmätningar visar på att ökad malgrad resulterar i en förtätning av arken. Dragprov visar att ökad malgrad leder till en märkbar ökad styrka och styvhet men en något blygsammare ökning i töjningsgräns. En 3D fibernätverksmodell skapas med en depositionsteknik enligt experimentella resultat. Genom att introducera fines på samma sätt som fibrer och öka antalet visade sig inte ha någon signifikant inverkan på nätverkets tjocklek. Istället fångas förtätningen av arken på två andra sätt i genereringen av fibernätverket, antingen genom ändring av bredd-höjd kvoten av fibrernas tvärsnitt eller genom förändring av fibrernas flexibilitet med användandet av den så kallade interfacevinkeln, vilka båda har stor inverkan på tjockleken. Men SEM bilder av tvärsnitten visade ingen stor skillnad hos bredd-höjd kvoten mellan de tre malgraderna. Malgradens påverkan på de mekaniska egenskaperna studeras numeriskt genom mikromekaniska simuleringar, vilka jämförs med experimentella resultat. Finita element simuleringarna visar att tjockleksändringen inte ensamt kan förklara den ökade styvheten som observerats i dragproven. Tillägget av fines modellerade att fånga fibrillernas egenskaper observerade i SEM bilder visade sig ha en stor inverkan på styvheten, jämförbar med dragproven. Alltså, den ökade styvheten beror dels på ökat antal kontaktpunkter efter förtätning av arken och dels på innehållet av fines.

Page generated in 0.0924 seconds