While it is difficult for base stations to estimate the millimeter wave (mmWave) channels and find the optimal mmWave beam for user equipments (UEs) quickly, the sub-6 GHz channels which are usually easier to obtain and more robust to blockages could be used to reduce the time before initial access and enhance the reliability of mmWave communication. Considering that the channel information is collected by a massive number of radio base stations and would be sensitive to privacy and security, Federated Learning (FL) is a match for this use case. In practice, the channel vectors are usually subject to Non-Independently Distributed (non-IID) distributions due to the greatly varying wireless communication environments between different radio base stations and their UEs. To achieve satisfying performance for all radio base stations instead of only the majority of them, a useful solution is designing personalized methods for each radio base station. In this thesis, we implement two personalized FL methods including 1) Finetuning FL Model on Private Dataset of Each Client and 2) Adaptive Expert Models for FL to predict the optimal mmWave beamforming vector directly from the non-IID sub-6 GHz channel vectors generated from DeepMIMO. According to our experimental results, Finetuning FL Model on Private Dataset of Each Client achieves higher average mmWave downlink spectral efficiency than the global FL. Besides, in terms of the average Top-1 and Top-3 classification accuracies, its performance improvement over the global FL model even exceeds the improvement of the global FL over the pure local models. / Även om det är svårt för en basstation att uppskatta en kanal för millimetervåg (mmWave) och snabbt hitta den bästa mmWave-strålen för en användarutrustning (UE), kan den dra fördel av kanaler under 6 GHz, som i allmänhet är mer lättillgängliga och mer motståndskraftig mot blockering, för att minska tid för första besök och förbättra tillförlitligheten hos mmWave-kommunikation. Med tanke på att kanalinformation samlas in av ett stort antal radiobasstationer och är känslig för integritet och säkerhet är federated learning (FL) väl lämpat för detta användningsfall. I praktiken, eftersom den trådlösa kommunikationsmiljön varierar mycket mellan olika radiobasstationer och deras UE, följer kanalvektorer vanligtvis en icke-oberoende distribution (icke-IID). För att uppnå tillfredsställande prestanda för alla radiobasstationer, inte bara de flesta radiobasstationer, är en användbar lösning att utforma ett individuellt tillvägagångssätt för varje radiobasstation. I detta dokument implementerar vi två personliga FL-metoder, inklusive 1) finjustering av FL-modellen på varje klients privata datauppsättning och 2) en adaptiv expertmodell av FL för att direkt generera icke-IID sub-6 GHz kanalvektorer förutsäga optimal mmWave beamforming vektorer. Enligt våra experimentella resultat uppnår finjustering av FL-modellen på varje klients privata datauppsättning högre genomsnittlig mmWave-nedlänksspektral effektivitet än global FL. Dessutom överträffar dess prestandaförbättring jämfört med den globala FL-modellen till och med den för den globala FL jämfört med den rent lokala modellen vad gäller genomsnittlig klassificeringsnoggrannhet i topp-1 och topp-3.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-325743 |
Date | January 2022 |
Creators | Cheng, Yuan |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:932 |
Page generated in 0.0024 seconds