Return to search

Netiesinių matematinių modelių grafuose skaitinė analizė / The Numerical Analysis of Nonlinear Mathematical Models on Graphs

Disertacijoje nagrinėjami nestacionarių matematinių modelių nestandartinėse srityse skaitiniai sprendimo algoritmai. Uždavinio formulavimo sritis yra šakotosios struktūros (ang. branching structures), kurių išsišakojimo taškuose apibrėžiami tvermės dėsniai. Tvermės dėsnių skaitinė analizė ir nestandartinių kraštinių sąlygų analizė skiria nagrinėjamus uždavinius nuo klasikinių aprašytų literatūroje matematinės fizikos uždavinių.
Disertacijoje suformuluoti uždaviniai apima skaitinių algoritmų šakotose struktūrose su skirtingais srautų tvermės dėsniais stabilumo ir konvergavimo tyrimą, lygiagrečiųjų algoritmų sudarymą ir taikymą, skaitinių schemų uždaviniams su nelokaliomis integralinėmis sąlygomis tyrimą. Disertacijoje sprendžiami taikomieji neurono sužadinimo ir impulso relaksacijos lazerio apšviestame puslaidininkyje uždaviniai, netiesinio modelio identifikavimo uždavinys.
Disertaciją sudaro įvadas, penki skyriai, rezultatų apibendrinimas, literatūros šaltinių sąrašas ir autorės publikacijų disertacijos tema sąrašas. Įvadiniame skyriuje formuluojama problema, aprašytas tyrimų objektas, darbo aktualumas, formuluojami darbo tikslai ir uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, pateikti ginamieji teiginiai ir disertacijos struktūra. Pabaigoje pristatomi pranešimai konferencijose disertacijos tema. Pirmajame skyriuje pateikta matematinių modelių nestandartinėse srityse arba su nestandartinėmis sąlygomis apžvalga. Antrajame... [toliau žr. visą tekstą] / The numerical algorithms for non-stationary mathematical models in non-standard domains are investigated in the dissertation. The problem definition domain is represented by branching structures with conjugation equations considered at the branching points. The numerical analysis of the conjugation equations and non-classical boundary conditions distinguish considered problems among the classical problems of mathematical physics presented in the literature.
The scope of the dissertation covers the investigation of stability and convergence of the numerical algorithms on branching structures with different conjugation equations, the construction and implementation of parallel algorithms, the investigation of the numerical schemes for the problems with nonlocal integral conditions.
The modeling of the excitation of neuron and photo-excited carrier decay in a semiconductor, also the problem of the identification of nonlinear model are considered in the dissertation.
The dissertation consists of an introduction, five chapters, main conclusions, bibliography and the list of the author's publications on the topic of dissertation. Introductory chapter covers the problem formulation and the object of research, the topicality of the thesis, the aims and objectives of the dissertation, the methodology of research, scientific novelty and the practical value of the achieved results. The defended thesis and structure of the dissertation are given in this chapter. The first chapter... [to full text]

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2012~D_20120720_121639-03735
Date20 July 2012
CreatorsTumanova, Natalija
ContributorsČiegis, Raimondas, Krylovas, Aleksandras, Štikonas, Artūras, Sapagovas, Mifodijus, Miškinis, Paulius, Ivanauskas, Feliksas, Pečiulytė, Sigita, Ragulskis, Minvydas Kazys, Vilnius Gediminas Technical University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius Gediminas Technical University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageEnglish
TypeDoctoral thesis
Formatapplication/pdf
Sourcehttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120720_121639-03735
RightsUnrestricted

Page generated in 0.0026 seconds