Alveolar macrophages (AMs) are lung tissue-resident macrophages that can be expanded in culture, but it is unknown to what extent culture affects their in vivo identity. Here we show that mouse long-term ex vivo expanded AMs (exAMs) maintained a core AM gene expression program, but showed culture adaptations related to adhesion, metabolism and proliferation. Upon transplantation into the lung, exAMs reacquired full transcriptional and epigenetic AM identity, even after several months in culture and could self-maintain long-term in the alveolar niche. Changes in open chromatin regions observed in culture were fully reversible in transplanted exAMs and resulted in a gene expression profile indistinguishable from resident AMs. Our results indicate that long-term proliferation of AMs in culture did not compromise cellular identity in vivo. The robustness of exAM identity provides new opportunities for mechanistic analysis and highlights the therapeutic potential of exAMs.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78399 |
Date | 26 August 2022 |
Creators | Subramanian, Sethuraman, Busch, Clara Jana-Lui, Molawi, Kaaweh, Geirsdottir, Laufey, Maurizio, Julien, Vargas Aguilar, Stephanie, Belahbib, Hassiba, Gimenez, Gregor, Yuda, Ridzky Anis Advent, Burkon, Michaela, Favret, Jérémy, Najjar, Sara Gholamhosseinian, de Laval, Berengère, Kandalla, Prashanth Kumar, Sarrazin, Sandrine Sarrazin Zentrum für Regenerative, Alexopoulou, Lena, Siewake, Michael H. |
Publisher | Springer Nature |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English, German |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1529-2908, 1529-2916, https://doi.org/10.1038/s41590-022-01146-w, info:eu-repo/grantAgreement/European Commission/H2020 | ERC | ERC-ADG/695093 //Macrophage aging and rejuvenation/MacAGE |
Page generated in 0.0022 seconds